Connect with us

Science

NASA plans to launch rockets to investigate the impact of the eclipse on the ionosphere

blank

Published

on

blank

Eclipse excitement isn’t just for people who can’t wait for next week’s amazing sights. As part of APEP (Atmospheric Perturbations around Eclipse Path, which is also the name of the Egyptian Sun God’s enemy), NASA will send three sounding rockets to see how the temporary absorption of sunlight changes the upper atmosphere.

As it starts 90 kilometers (55 miles) above the Earth’s surface, the ionosphere is well above the highest clouds and generally gets sun all day. The only time this isn’t true is during an eclipse, which gives you a chance to study it in a way that dusk doesn’t. Most eclipses don’t have good places to launch rockets, at least not in the line of totality. But on April 8, the eclipse will be close to some important American sites.

The APEP team, led by Professor Aroh Barjatya of Florida’s Embry-Riddle Aeronautical University, launched three sounding rockets from New Mexico’s White Sands Test Facility during the 2023 annular eclipse. They added new equipment to these rockets. These will look into the ionosphere up to 420 kilometers (260 miles) above Earth during the peak of the eclipse and for 45 minutes before and after.

She said in a statement that the ionosphere is “an electrified region that reflects and refracts radio signals and also affects satellite communications as the signals pass through.” “Understanding the ionosphere and making models to help us predict disturbances is important for keeping our world running smoothly in a world that depends more and more on communication.”

blank

Of course, sunlight affects the whole atmosphere, but it is the sunlight that makes the ionosphere. Photons with a lot of energy split atoms into electrons and ions with positive charges. They come back together at night, which makes the ionosphere weaker. Up in the atmosphere, weather conditions also play a role, making the scene more complicated.

Satellites have observed even greater effects of eclipses, but people with the right equipment are rarely in the right place at the right time to make observations. The rockets, on the other hand, can be timed however experts want. The launch point on Wallops Island, Virginia, is to the west of the path of totality. The APEP team thinks it’s close enough to get the information they need, though.

The waves created by ionized particles during the 2017 total solar eclipse

Previous observations indicate the presence of air waves that have an impact on the entire trajectory of the eclipse. Additionally, there are localized disturbances, called perturbations, that can disrupt radio communications. The alterations are observable in fluctuations in both temperature and plasma density.

During the eclipse, the rockets will measure and compare the density of charged and neutral particles at three specific locations. “According to Barjatya, each rocket will release four secondary instruments, which are the size of a two-liter soda bottle and measure the same data points. This means that the results obtained from these instruments are equivalent to those obtained from fifteen rockets, despite only launching three.” The endeavor will receive further support through the utilization of high-altitude balloons, ground-based radar, and a selection of satellite observations.

Above is a depiction of the rockets’ launch that took place during the annular eclipse in 2023. At the American Geophysical Union conference, it was stated that there was a significant decrease in plasma density.

“We observed the disturbances that can impact radio communications in the second and third rockets, but not in the first rocket, which occurred prior to the maximum local eclipse,” stated Barjatya. “We are extremely enthusiastic about relaunching them during the total eclipse in order to determine if the disturbances occur at the same height and if their intensity and size remain consistent.”

As Editor here at GeekReply, I'm a big fan of all things Geeky. Most of my contributions to the site are technology related, but I'm also a big fan of video games. My genres of choice include RPGs, MMOs, Grand Strategy, and Simulation. If I'm not chasing after the latest gear on my MMO of choice, I'm here at GeekReply reporting on the latest in Geek culture.

Engineering

Testing the longest quantum network on existing fiber optics in Boston

blank

Published

on

blank

Imagine a world where information can be transmitted securely across the globe, free from the prying eyes of hackers. Its incredible power lies in the realm of quantum mechanics, making it a groundbreaking advancement with immense potential for the future of telecommunications. There have been obstacles to conquer, but there has also been notable progress, exemplified by a recent achievement from researchers at Harvard University.

Using the existing fiber optics within the city of Boston, the team successfully demonstrated the longest transmission between two nodes. The fiber path covered a total distance of 35 kilometers (22 miles), encircling the entire city. The two nodes that connected to the close path were situated on different floors, making the fiber route not the shortest but rather an intriguing one.

Quantum information has been successfully transmitted over longer distances, showcasing remarkable advancements in this experiment that bring us closer to the realization of a practical quantum internet. The real breakthrough lies in the nodes, going beyond the mere utilization of optical fibers.

A typical network utilizes signal repeaters made of optical fiber. These devices incorporate optical receivers, electrical amplifiers, and optical transmitters. The signal is received, transformed into an electrical form, and subsequently converted back into light before being transmitted. They play a crucial role in expanding the reach of the original signal. And in its present state, this is not suitable for quantum internet.

blank

The issue lies not in the technology, but rather in the fundamental principles of physics. Copying quantum information is not possible in that manner. Quantum information is highly secure due to its entangled state. The Harvard system operates by utilizing individual nodes that function as miniature quantum computers, responsible for storing, processing, and transferring information. This quantum network, consisting of only two nodes, is currently the most extensive one ever achieved, with nodes capable of such remarkable functionality.

“Demonstrating the ability to entangle quantum network nodes in a bustling urban environment is a significant milestone in enabling practical networking between quantum computers,” stated Professor Mikhail Lukin, the senior author.

At each node, a tiny quantum computer is constructed using a small piece of diamond that contains a flaw in its atomic arrangement known as a silicon vacancy center. At temperatures close to absolute zero, the silicon vacancy has the remarkable ability to capture, retain, and interconnect pieces of data, making it an ideal choice for a node.

“Given the existing entanglement between the light and the first node, it has the capability to transmit this entanglement to the second node,” elucidated Can Knaut, a graduate researcher in Lukin’s lab. “This phenomenon is known as photon-mediated entanglement.”

The study has been published in the prestigious journal Nature.

Continue Reading

Astronomy

NASA’s flyby of Europa shows that “something” is moving under the ice

blank

Published

on

blank

Europa’s surface has marks that show the icy crust is vulnerable to the water below. The most important thing is that Juno’s recent visit shows what might be plume activity. If this is real, it would let future missions take samples of the ocean inside the planet without having to land.

Even though it’s been almost two years since Juno got the closest to Europa, its data is still being looked at. Even though Juno has been going around Jupiter since 2016, the five pictures it took on September 29, 2022, were the closest views of Europa since Galileo’s last visit in 2000.

Some might say that’s a shocking lack of interest in one of the Solar System’s most interesting worlds, but it could also have been a good way to see how things had changed over time.

Europa is the smoothest object in the solar system because its ocean keeps it from sinking to the surface. Still, it’s not featureless; Juno saw some deep depressions with steep walls that are 20 to 50 kilometers (12 to 31 miles) wide, as well as fracture patterns that are thought to show “true polar wander.

In a statement, Dr. Candy Hansen of the Planetary Science Institute said, “True polar wander occurs if Europa’s icy shell is separated from its rocky interior. This puts a lot of stress on the shell, which causes it to break in predictable ways.”

The shell that sits on top of Europa’s ocean is thought to be rotating faster than the rest of the moon. This is what true polar wandering means. People think that the water below is moving and pulling the shell along with it. Ocean currents are thought to be causing this. The currents are most likely a result of heat inside Europa’s rocky core, which is heated up as a result of Jupiter and its larger moons pulling on Europa and turning it into a large stress ball.

The ocean and ice could stretch and compress parts of the ice, which is how the cracks and ridges that have been seen since Voyager 2 visited were made.

A group under the direction of Hansen is viewing images of Europa’s southern half. The scientist said, “This is the first time that these fracture patterns have been mapped in the southern hemisphere. This suggests that true polar wander has a bigger effect on Europa’s surface geology than was thought before.”

Ocean currents are not to blame for all of Europa’s map changes. It appears that optical tricks can even fool NASA. Hansen said, “Crater Gwern is no longer there.” “JunoCam data showed that Gwern, which was once thought to be a 13-mile-wide impact crater and one of Europa’s few known impact craters, was actually a group of ridges that crossed each other to make an oval shadow.”

But Juno gives more than it takes away. The team is interested in what they’re calling the Platypus because of its shape, not because it has a lot of parts that shouldn’t go together. Ridges on its edge look like they are collapsing into it. The scientists think this might be because pockets of salt water have partially broken through the icy shell.

blank

The Europa Clipper would find these pockets to be fascinating indirect targets for study, but the dark stains that cryovolcanic activity might have left behind are even more intriguing.

“These features suggest the possibility of current surface activity and the existence of liquid water beneath the surface on Europa,” stated Heidi Becker from the Jet Propulsion Laboratory. There is evidence of such activity in the geysers of Enceladus, but there is still uncertainty regarding whether it is currently happening on Europa.

Engaging in such an endeavor would enable the sampling of the interior ocean to detect signs of life simply by flying through a plume and gathering ice flakes without the need for landing or drilling.

It seems that in the past, there was a significant shift of over 70 degrees in the locations of features on Europa’s surface, although the reasons for this remain unknown. However, at present, polar wander only leads to minor adjustments.

Continue Reading

Bionics

A new syndrome linked to COVID that could be fatal has appeared

blank

Published

on

blank

There is a new outbreak of a rare but deadly autoimmune disorder in the north of England. New research suggests that the outbreak may be linked to COVID-19. Anti-MDA5-positive dermatomyositis is the name of the disease. It was mostly found in Asian people before the pandemic, but now it’s becoming more common among white people in Yorkshire.

Antibodies that target the MDA5 (melanoma differentiation-associated protein 5) enzyme are what cause the illness. It is linked to progressive interstitial lung disease, which scars lung tissue. Between 2020 and 2022, doctors in Yorkshire reported 60 cases of MDA5 autoimmunity, which was the highest number ever. Eight people died as a result.

What the researchers found when they looked at this sudden rise in cases is that it happened at the same time as the main waves of COVID-19 infections during the pandemic’s peak years. This caught their attention right away because MDA5 is an RNA receptor that is very important for finding the SARS-CoV-2 virus.

The study authors write, “This is to report a rise in the rate of anti-MDA5 positivity testing in our region (Yorkshire) in the second year of the COVID-19 pandemic. This was noteworthy because this entity is not commonly found in the UK.” They say this is likely a sign of “a distinct form of MDA5+ disease in the COVID-19 era.” They have named it “MDA5-autoimmunity and Interstitial Pneumonitis Contemporaneous with COVID-19” (MIP-C).

The researchers used tools that look for shared traits among people in the same medical cohort to figure out how this newly discovered symptom works. In this way, they found that people who had MDA5 autoimmunity also tended to have high levels of interleukin-15 (IL-15), a cytokine that causes inflammation.

The author of the study, Pradipta Ghosh, said in a statement that IL-15 “can push cells to the brink of exhaustion and create an immunologic phenotype that is very, very often seen as a hallmark of progressive interstitial lung disease, or fibrosis of the lung.”

Overall, only eight of the 60 patients had tested positive for COVID-19 before. This means that a lot of them may have had infections that didn’t cause any symptoms that they weren’t aware of. This means that even mild infections with no early symptoms might be enough to cause MDA5 autoimmunity.

The researchers say, “Given that the highest number of positive MDA5 tests happened after the highest number of COVID-19 cases in 2021 and at the same time as the highest number of vaccinations, these results suggest an immune reaction or autoimmunity against MDA5 after exposure to SARS-CoV-2 and/or vaccines.”

Ghosh says that the event probably isn’t just happening in Yorkshire. Reports on MIP-C are now coming in from all over the world.

The study was written up in the eBioMedicine journal.

Continue Reading

Trending