Connect with us

Engineering

China’s $47 billion semiconductor fund prioritizes chip sovereignty as a key focus

blank

Published

on

blank

China has just shut down a third government-supported investment fund in order to strengthen its semiconductor industry and decrease dependence on other countries for the production and use of wafers. This move is aimed at emphasizing what is known as chip sovereignty.

The National Integrated Circuit Industry Investment Fund of China, commonly referred to as ‘the Big Fund,’ has had two previous iterations: Big Fund I (2014–2019) and Big Fund II (2019–2024). The latter was considerably more substantial than the earlier, but Big Fund III surpasses both with a total of 344 billion yuan, equivalent to around $47.5 billion, as disclosed in official filings.

The size of Big Fund III, which surpasses expectations, further demonstrates Huawei’s growing dependence on Chinese suppliers and reflects the country’s determination to attain self-reliance in semiconductor manufacture. It serves as a reminder that the ongoing competition in semiconductor technology between China and Western countries is reciprocal.

Both the United States and Europe share the desire to decrease their reliance on their long-standing technological competitors. China also has concerns regarding its supply, which extend beyond the potential impact on shipments from the U.S. and its allies.

Taiwan is the primary focus when it comes to chip manufacturing. If China were to take control of its production capabilities, it would greatly disadvantage the United States and its allies. Currently, Taiwan Semiconductor Manufacturing Co. (TSMC) produces approximately 90% of the world’s most advanced chips.

However, according to sources, Bloomberg has learned that ASML, a company located in the Netherlands, and TSMC have methods to render chip-making machinery inoperable in the case of a Chinese invasion of Taiwan.

China now manufactures over 60% of legacy chips, which are often used in automobiles and household appliances, according to a statement made by U.S. Commerce Secretary Gina Raimondo.

The competition between legacy and modern chips has expanded, yielding varying outcomes.

The Chinese official stance is that the policies of the United States is having a negative effect, resulting in a decline in exports from prominent American chip manufacturers. This viewpoint is shared by others as well.

According to Hebe Chen, a market analyst at IG, Nvidia is faced with the challenge of balancing its presence in the Chinese market while also managing the tensions between the United States and China. Due to U.S. sanctions, the company developed three customized chips specifically for the Chinese market. However, in order to remain competitive, the company had to cut the price of these chips, compromising its desired pricing strategy.

Nevertheless, it might be contended that the financial challenges faced by Western chip manufacturers may be justified if it hinders China’s rapid development and acquisition of more sophisticated semiconductors compared to its rivals.

Indications suggest that China may face significant consequences if limitations are imposed, such as the potential loss of access to Nvidia’s advanced chips for its AI companies or increased difficulties for its leading company, SMIC, in manufacturing its own chips.

The existence of Big Fund III indicates that China is experiencing significant pressure. As per reports, the cash will be allocated for both large-scale wafer fabrication, similar to past investments, as well as for the production of high-bandwidth memory chips. HBM chips, often referred to as high-bandwidth memory chips, are utilized in many applications such as artificial intelligence (AI), 5G technology, and the Internet of Things (IoT).

However, the most significant indicator is its size.

With the support of six prominent state-owned banks, Big Fund III has surpassed the $39 billion in direct incentives allocated by the U.S. government for chip manufacture under the CHIPS Act. Nevertheless, the total amount of federal assistance is $280 billion.

The EU Chips Act, valued at €43 billion, appears relatively modest compared to South Korea’s $19 billion support package. It is likely that the markets have taken note of this.

The announcement of Big Fund III triggered a surge in the stock prices of Chinese semiconductor businesses that are poised to gain from this fresh infusion of funding. Nevertheless, Bloomberg observed that Beijing’s previous investments have not consistently yielded positive results.

Specifically, China’s highest-ranking officials were dissatisfied with the prolonged inability to create semiconductors capable of replacing American circuitry. Furthermore, the media outlet highlighted that the previous leader of the Big Fund was dismissed and subjected to an investigation due to allegations of corruption.

Even in the absence of corruption, implementing significant modifications to semiconductor manufacturing is a time-consuming endeavor. In both Europe and the United States, the process takes a considerable amount of time. However, there are noteworthy and innovative advancements occurring.

Diamfab, a French deep-tech startup, is currently developing diamond semiconductors that have the potential to facilitate the green transition, specifically in the automobile sector. Although it is still a few years in the future, these Western ideas have the potential to be just as intriguing to monitor as the actions of established Chinese companies.

As Editor here at GeekReply, I'm a big fan of all things Geeky. Most of my contributions to the site are technology related, but I'm also a big fan of video games. My genres of choice include RPGs, MMOs, Grand Strategy, and Simulation. If I'm not chasing after the latest gear on my MMO of choice, I'm here at GeekReply reporting on the latest in Geek culture.

Continue Reading
Click to comment
Subscribe
Notify of
guest
0 Comments
Inline Feedbacks
View all comments

Engineering

Self-driving cars are safe as long as you don’t plan to turn them around

blank

Published

on

blank

A new study looked at the safety of self-driving cars (AVs) and found that while they are better than humans in some everyday driving tasks, they are not yet as good as humans when it comes to turning or driving in low light.

We need to know that our cars are safe before we can just get in and let them take us where we need to go. The hope is that one day they will be able to drive better than humans. Cars don’t get tired, irritable at other drivers, or lose focus while thinking about something else, after all.

Tests of the technology have been done all over the world, and we now have a lot of information from semi-autonomous systems in cars that are used in real-life traffic situations. The new study from the University of Central Florida looked at accident data from 35,113 human-driven vehicles (HDVs) and data from 2,100 Advanced Driving Systems and Advanced Driver Assistance Systems. The goal was to find out how safe AVs and HDVs are in different situations.

In general, the team found that AVs are safer than human drivers, though there are a few big exceptions.

“The analysis suggests that accidents involving vehicles equipped with advanced driving systems generally have a lower chance of occurring than accidents involving human-driven vehicles in most of the similar accident scenarios,” the team said in their paper.

AVs did better than HDVs at routine traffic tasks like staying in their lanes and adjusting to the flow of traffic. They also had fewer accidents while doing these tasks. Sideswipe accidents were 0.2% less likely in AVs, and rear-end accidents were 0.5% less likely in AVs.

In other traffic situations, though, humans are still better than AI.

“Based on the model estimation results, it can be concluded that ADS [automatic driving systems] in general are safer than HDVs in most accident scenarios for their object detection and avoidance, precision control, and better decision-making,” the team said.

“However, the chances of an ADS accident happening at dawn or dusk or when turning are 5.250 and 1.988 times higher, respectively, than the chances of an HDV accident happening at the same times and places.” The reasons could be a lack of situational awareness in difficult driving situations and a lack of experience driving an AV.

Finding these key problem areas could help researchers improve how well AVs work. It would be helpful to think about finding dangers in new ways right now.

“At dawn and dusk, for instance, the sun’s shadows and reflections may confuse sensors, making it hard for them to distinguish between objects and identify potential hazards,” they wrote. “Furthermore, the fluctuating light conditions can impact the accuracy of object detection and recognition algorithms used by AVs, which can result in false positives or negatives.”

The study might disappoint supporters of self-driving cars. They may be waiting for the crossover point where AVs are better than human drivers. But if performance gets better, it can be sent to all AVs at the same time. Researchers who find a way to make turning better can use it on these kinds of vehicles through software updates, which is something we can’t do with people.

We hope that one day we can get into AVs without having to worry about lights changing or other people on the road getting distracted.

Nature Communicationsis where the study can be found.

Continue Reading

Engineering

A groundbreaking type of cement has the potential to transform homes and roads into massive energy storage systems

blank

Published

on

blank

For lack of a better word, concrete is awful for the environment. Beyond water, it’s the most-used product in the world, and its carbon footprint shows that making cement and concrete alone is responsible for 8% of the world’s CO2 emissions, or more than 4 billion metric tons of greenhouse gases every year.

But MIT researchers have come up with new material that might be able to help solve that issue. After mixing water, cement, and a sooty substance called carbon black, they made a supercapacitor, which is like a big concrete battery and stores energy.

Admir Masic, a scientist at MIT and one of the researchers who came up with the idea, said in a statement last year, “The material is fascinating.”

“You have cement, which is the most common man-made material in the world, mixed with carbon black, which is a well-known historical material because it was used to write the Dead Sea Scrolls,” he said. “These materials are at least 2,000 years old, and when you mix them in a certain way, you get a conductive nanocomposite. That’s when things get really interesting.”

The amazing properties of the material come from the fact that carbon black is both highly conductive and water-resistant. To put it another way, as the mixture hardens, the carbon black rearranges itself into a web of wires that run through the cement.

According to the researchers, it’s not only a huge step forward in the move toward renewable energy around the world, but its recipe also makes it better than other batteries. Even though cement has a high carbon cost, the new material is only made up of three cheap and easy-to-find ingredients. Standard batteries, on the other hand, depend on lithium, which is limited and expensive in terms of CO2: “particularly in hard rock mining, for every tonne of mined lithium, 15 tonnes of CO2 are emitted into the air,” says MIT’s Climate Portal.

Since cement isn’t going anywhere soon, putting it together with a simple and effective way to store energy seems like a clear win. Damian Stefaniuk, one of the researchers who came up with the idea, told BBC Future this week, “Given how common concrete is around the world, this material has the potential to be very competitive and useful in energy storage.”

“If it can be made bigger, the technology can help solve a big problem: how to store clean energy,” he said.

How could that be done? One possible solution is to use it to pave roads. This way, the highways can collect solar energy and then wirelessly charge electric cars that drive on them. Because they release energy much more quickly than regular batteries, capacitors aren’t very good for storing power every day. However, they do have benefits like higher efficiency and lower levels of performance degradation, which makes them almost perfect for giving moving cars extra power in this way.

One more interesting idea is to use it as a building material. The researchers wrote in their paper that a 45-cubic-meter block of the carbon-back-cement mix could store enough energy to power a typical US home for a year. To give you an idea of how big that is, 55 of them would fit in an Olympic-sized swimming pool.

The team says that a house with a foundation made of this material could store a day’s worth of energy from solar panels or windmills and use it whenever it’s needed because the concrete would stay strong.

Franz-Josef Ulm, a structural engineer at MIT, said, “That’s where our technology looks very promising, because cement is everywhere.”

“It’s a fresh way to think about the future of concrete.”

The paper is now out in the journal PNAS.

Continue Reading

Engineering

The Cybertruck is experiencing a less than favorable beginning

blank

Published

on

blank

In 2019, Elon Musk introduced the Cybertuck, an event that did not unfold as Musk had anticipated. Subsequently, a series of calamities have occurred, and presented here are a few comical and mortifying instances.
The initial moment of realization

The Cybertruck was revealed on a well-illuminated stage as a new addition to Tesla’s product lineup. The vehicle was designed to accommodate six individuals, achieve a speed of 0 to 100 kilometers (0 to 60 miles) per hour in under 3 seconds, and possess a somewhat childlike aesthetic.

Additionally, it was asserted during the presentation that the material was impervious to a 9mm handgun. In order to demonstrate the veracity of this assertion, Franz von Holzhausen, the chief designer of Tesla, forcefully propelled a metal sphere towards one of the truck’s windows.

The ball promptly shattered the window, much to the astonishment of all present, and even Musk uttered a few profanities.

The company continues to assert that the Cybertruck remains resistant to shattering.

With the release of the Cybertruck, it has become apparent that rough terrain poses a challenge for this vehicle, despite its Off-Road Mode designed to handle steep inclines, declines, uneven surfaces, shallow streams, and other obstacles.

The Cybertuck appears to be better suited for driving on paved roads than off-roading, which has been a disappointment for owners. Even mild off-roading can be problematic and may necessitate assistance.

It strongly dislikes sand

 

@myonymyon

lol this thing is such a shitbox #fyp #tesla #cybertruck #fail #meme #guilestheme #guilesthemegoeswitheverything #bruh #shitbox

♬ original sound – Myony (LESBIAN APOCALYPSE)

Being summoned back
In the previous month, a recall was issued for Cybertrucks manufactured from November 13, 2024, to April 4, 2024. This recall specifically related to a problem with the accelerator pedals and affected a total of 3,878 vehicles. The presence of lubricant between the pedal and the covering pad was causing the pad to slide off and become stuck underneath the interior trim in front of it.

@el.chepito1985

serious problem with my Cybertruck and potential all Cybertrucks #tesla #cyberbeast #cybertruck #stopsale #recall

♬ original sound – el.chepito

The Cybertruck appears to have encountered a less than favorable beginning.

 

Continue Reading

Trending

0
Would love your thoughts, please comment.x
()
x