Connect with us

Engineering

A drone is able to travel through the skies at speeds close to the speed of sound, namely at Mach 0.9

blank

Published

on

blank

A test flight of a new drone has taken off at speeds close to supersonic, going through the sky at Mach 0.9, which is 1,111 kilometers per hour (690 miles per hour).

But this is only the start of things. Venus Aerospace, the company that made the drone, hopes to get it to go nine times the speed of sound, or Mach 9.

The missile-shaped 2.4-meter (8-foot) drone was taken to a height of 3,657 meters (12,000 feet) on February 24 by an airplane. When the drone was let go, its hydrogen peroxide monopropellant engine was set to 80% power so that it wouldn’t go faster than Mach 1. It then flew for 16 kilometers (10 miles).

“Using a platform launched from the air and a rocket with wings lets us quickly and cheaply do the bare minimum test of our RDRE as a hypersonic engine.” Andrew Duggleby, CTO and co-founder of Venus Aerospace, said in a statement, “The team did a great job and now has a lot of data to use and tweak for the next flight.”

The new aerospace business, Venus Aerospace, is based in Houston, Texas. Its goal is to pave the way for hypersonic flight (speeds of Mach 5 and above).

In their most recent test flight, they did some testing for their Rotating Detonation Rocket Engine (RDRE). This engine is being made in collaboration with DARPA, the US State Department’s research agency that works on a lot of strange and cool technologies.

“Next is RDRE flight, and then hypersonic flight, which proves that the RDRE is the key to the hypersonic economy,” the company’s CEO and co-founder, Sarah “Sassie” Duggleby, said.

They want to make a car that can go to Mach 9, which is about 11,000 kilometers per hour (6,835 miles per hour).

This is way too fast of a speed. The NASA/USAF X-15 is still the fastest plane that a person has ever flown. In 1967, pilot Pete Knight took this jet to a crazy high speed of Mach 6.7, which is about 4,520 miles per hour or 7,274 kilometers per hour.

Concorde was a business supersonic plane that flew people for money until 2003. Its top speed was Mach 2, which is about 2,179 kilometers per hour (1,354 miles per hour).

Even worse, Venus Aerospace wants to let people fly on these Mach 9 trips. Venus Aerospace thinks it’s making good progress toward its pipe dream, even though there’s still a lot of work to be done.

Sarah Duggleby said, “One bite at a time is how you do hard things.”

As Editor here at GeekReply, I'm a big fan of all things Geeky. Most of my contributions to the site are technology related, but I'm also a big fan of video games. My genres of choice include RPGs, MMOs, Grand Strategy, and Simulation. If I'm not chasing after the latest gear on my MMO of choice, I'm here at GeekReply reporting on the latest in Geek culture.

Continue Reading

Artificial Intelligence

Android’s latest Theft Detection Lock feature serves as a deterrent against smartphone thefts and snatch-and-grab incidents

blank

Published

on

blank

Imagine yourself engaged in your own affairs, seated on a park bench, gazing at your mobile device. Explosion. An individual seizes your device and swiftly flees with it. While Android and iOS devices do have certain security measures, what about the brief period of time when the phone is still unlocked? Is there a method available to remotely erase its data?

Burglars can obtain a substantial amount of information within that brief duration. Each moment is significant. During the Google I/O 2024 developer conference, Google unveiled a new feature for Android called Theft Detection Lock. This feature is specifically designed to safeguard against the increasing risk of theft. Once activated, the AI-driven function will automatically secure the device.

According to Google, if your phone detects a typical movement related to theft, it will rapidly lock the screen to prevent thieves from easily accessing your data. An instance of such a stimulus is a mechanism that abruptly initiates rapid motion in the opposite direction.

Google is implementing an offline device lock feature, specifically designed to safeguard the device in the event of intentional disconnection from the network. Occurrences such as consistently failing to authenticate the phone will activate that functionality.

The forthcoming update will also introduce functionality that enhances the level of difficulty for malefactors attempting to perform a remote factory reset on your device. According to Google, this upgrade prevents thieves from setting up a stolen device again without having knowledge of your device or Google account credentials, even if they force a reset. By rendering a stolen device unsellable, it diminishes the motivation for individuals to engage in phone theft.

Biometric authentication will be mandatory for modifying sensitive information while the device is connected from an unsecured location.

Continue Reading

Engineering

Supercapacitors Reach New Heights with 19 Times Greater Capacitance

blank

Published

on

blank

Based on papers published at the same time by unrelated teams, two methods for improving capacitors’ ability to store charge appear to be effective. Each has the potential to make supercapacitors better at storing energy and maybe even put them in the running for large-scale energy storage.

For a long time, supercapacitors have been better than batteries because they can quickly release the charge they have stored. But not even the best supercapacitors have been able to store enough power to meet the most important needs of society. Sometimes, big steps forward have made supercapacitors look like they could compete in that market. But since lithium-ion battery prices have dropped so much, there isn’t much room for other batteries. That could change soon.

Two papers that came out last month in the same issue of Science both look at big improvements in capacitance. It remains to be seen if either of them can be scaled up, though.

The basic idea behind all capacitors is the same. There is material between the positive and negative charges to keep them from jumping across the gap. When a switch is closed, the negative charges can move around to meet the positive charges. This makes an electric current, which can be used for many things.

Laptops and phones now have hundreds of capacitors inside them. When you look at a phone, you can tell how small it is. Because of this, the amount of power they can store is many times too small to power a car, let alone a city all night.

As you might guess from their name, supercapacitors have a lot more capacitance. Even though they’ve made regenerative braking possible, batteries are still the best choice for long-distance driving. To make that happen, the capacitance has to go up, which means finding cheap materials that stop very large amounts of charge from recombining.

Many capacitors use ferroelectric materials like BaTiO3, but they have a problem called “remnant polarization,” which means that some charge stays behind instead of being released. Their crystals also break down over time.

A team from Korean and American institutions reduced remnant polarization by putting a 3D structure between 2D crystals. They were then able to store 191.7 joules per cubic centimeter of capacitor and release it with more than 90% efficiency. Similar products on the market today can store around 10 joules per cubic centimeter.

Dr. Sang-Hoon Bae of Washington University in St. Louis said in a statement, “We made a new structure based on the innovations we’ve already made in my lab involving 2D materials.” “At first, we weren’t interested in energy storage, but while we were studying the properties of materials, we came across a new physical phenomenon that we thought could be used for energy storage. It was very interesting and could be much more useful.”

The work report by Bae and his co-authors only talks about testing the capacitor over 10 cycles, which shows that there is still a long way to go before it can be used in real life. “We’re not quite at our best yet, but we’re already doing better than other labs,” Bae said. For capacitors to be able to charge and discharge very quickly and hold a lot of energy, our next step is to improve the structure of this material even more. To see this material used widely in big electronics like electric cars and other new green technologies, we need to be able to do that without losing storage space over time.

In the same issue of Science, scientists from Cambridge University talk about results that change how people think about making supercapacitors with carbon electrodes store more power. They say, “Pore size has long been thought to be the main way to improve capacitance.” But when commercial carbons with pores measuring nanometers were compared, there wasn’t much of a link between size and capacitance. With nuclear magnetic resonance spectroscopy, we can see that what matters is the level of structural disorder in the capacitors’ domains.

They say that more disorganized carbons with smaller graphene-like domains have higher capacitances because their nanopores store ions more efficiently. “We think that for carbons with smaller domains, the charges are more concentrated, making the interactions between ions and carbon atoms stronger. This makes it easier for ions to be stored.”

The paper makes no mention of how much capacitance is possible when the carbon domains are sufficiently disorganized. This is because it goes against the norm to try to make electronic devices more disorganized than ordered.

Continue Reading

Artificial Intelligence

New 3D displays are coming out from Looking Glass

blank

Published

on

blank

Looking Glass produces immersive mixed-reality displays that create a three-dimensional visual experience without the requirement of specialized eyewear. Today, it introduces two new displays, one of which is a 16-inch model priced at $4,000. Additionally, there is a 32-inch screen available, which comes with a price tag that is intentionally kept high to deter those who cannot afford it from inquiring about its cost. The displays are offered in both landscape and portrait orientations, allowing for increased versatility to accommodate various content formats and applications.

The price of the previous 15-inch model was $6,000, thus indicating a slight decrease in prices. Additionally, a few years ago, the company unveiled a $350 holographic digital photo frame along with software that enables the enhancement of your vacation photos to produce a three-dimensional effect.

blank

The new displays offer stunning group 3D visualization without the need for headsets. This means that professionals working with 3D content can get things done without having to deal with the hassle and fatigue of wearing extra hardware. The company says that its products are made for professionals in design, engineering, education, research, and healthcare who need cutting-edge visualization tools.

The new displays, along with the recently announced Looking Glass Go, complete the company’s range of space-related products. Looking Glass Go turns 2D photos into 3D memories, but the bigger formats are better for XR developers and professionals.

Groups can view the content, which is another advantage of these displays. This is especially useful when working together. The business says that up to 100 different people can use the content at the same time.

The screens can show a lot of different types of media, like holographic images, high-quality videos, and real-time apps. They also have gesture-based controls that make the experience even more immersive without having to touch the computer screen.

Looking Glass has many ways to make content, such as plugins for Unity, Unreal, Blender, and WebXR. It also comes with a software development kit and a 3D model importer for making your own holographic content.

Continue Reading

Trending