Space Exploration
Soon, “One Of The Rarest Space Events Of Our Lives” will happen around the world
So far, this decade has been pretty good for seeing cosmic events. In addition to the total solar eclipse and the sun getting close to its busiest time, which will create beautiful auroras on Earth, T. Coronae Borealis will soon go nova, which was first written about in a medieval manuscript.
There are still a few more treats in store for us in this decade, like a visit from the asteroid 99942 Apophis. According to observations, Apophis was at level 2 on the Torino impact hazard scale when it was first found in 2004. A score of 0 means there is almost no chance of impact, and a score of 10 means “a collision is certain, capable of causing a global climatic catastrophe that may threaten the future of civilization as we know it, whether impacting land or ocean.”
Even though Level 2 is low, it’s for things that are “making a somewhat close but not highly unusual pass near the Earth” and need more astronomers’ attention. It was raised to level 4 in December of that year, though, because there was a 1.6% chance that the asteroid would hit Earth in 2029.
NASA says that level 4 is “a close encounter that deserves astronomers’ attention.” “Right now, calculations show that there is a 1% or higher chance of a collision that could destroy a region.” It’s likely that new telescopic observations will lead to a move to Level 0. If the meeting is less than ten years away, the public and public officials should pay attention.
Over the years that scientists have been looking for and keeping an eye on near-earth objects (NEOs), none of them have gotten above level 4. Because they could be dangerous to Earth, they named one of them Apophis, after the Egyptian god of darkness and destruction. More observations showed that there would not be a collision in 2029, 2036, or 2068. However, they will still come very close.
“We no longer think that the asteroid will hit Earth in 2068,” Davide Farnocchia of NASA’s Center for Near-Earth Object Studies said. “Our calculations don’t show any impact risk for at least the next 100 years.”
This asteroid will come very close to Earth in 2029, coming within 32,000 kilometers (20,000 miles) of the surface. That’s closer than some of our satellites. The European Space Agency called the asteroid’s passing “one of the rarest space events of our lives,” and people in the Eastern Hemisphere should be able to see it without a telescope or binoculars.
1. Apophis will miss Earth
Apophis will miss Earth when it flies past our planet on 13 April 2029. If you only remember one of these facts, make sure it’s this one. pic.twitter.com/coOtFY5r2i
— ESA Operations (@esaoperations) June 19, 2024
The event is very rare because the object is so big—its average diameter is 375 meters (1230 feet)—and so close to Earth.
An X post from ESA said, “The 2029 flyby is a very rare event.” Scientists think that an asteroid as big as Apophis only comes this close to Earth once every 5,000 to 10,000 years. They found this by looking at the sizes and orbits of all known asteroids and impact craters around the solar system.
NASA wants to visit the asteroid during its approach with its OSIRIS APEX mission. This mission repurposed the asteroid sampler that used to be called OSIRIS-REx and sent it to meet the asteroid soon after it flew by.
“Our planet’s gravitational pull is expected to alter the asteroid’s orbit, change how and how fast it spins on its axis, and possibly cause quakes or landslides that will alter its surface,” NASA says about their planned mission. Researchers on Earth will be able to see these changes thanks to OSIRIS-APEX. Apophis is a “stony” asteroid made of silicate (or rocky) material and a mix of metallic nickel and iron. The OSIRIS-APEX spacecraft will also dip toward the surface of Apophis and fire its engines to kick up loose rocks and dust. By doing this, scientists will be able to determine the composition of the material just below the asteroid’s surface.
The ESA also wants to visit the asteroid because a flyby will teach us more about how to protect the Earth from these kinds of objects.
“Earth’s gravity will’stretch’ and’squeeze’ Apophis, triggering landslides and revealing lots about the asteroid’s material, structure, density, and cohesion,” ESA said. “This knowledge will help us protect Earth in the future.”
ESA said again that the asteroid is not a threat in 2029; it is just a beautiful sight and a chance to do some cool science in space.
Astronomy
Witness the rare celestial event of Mars and Jupiter reaching their closest proximity in the sky this week, a phenomenon that will not occur again until 2033.
Mars and Jupiter will be only 0.3 degrees apart in the sky on August 14. From our point of view, this passage is very close. If you miss it, you won’t be able to see another one until 2033.
When two objects pass each other in the sky from our point of view, this is called a conjunction. Every time two planets came together, the closer one would block out the other because they would all be moving in a perfectly flat plane. The orbits of the planets are slightly different from those of the other planets, though, so they move slightly to the north and south of each other. Every time, that gap is a different size.
When two things happen close together, the results are especially stunning. Jupiter and Saturn were close enough to each other in 2020 that they could be seen in the same field of view through a telescope. This is a treat for people who like to observe the sky.
Being 0.5 degrees wide, the full moon will fit in any view that can hold the whole moon. This pair will also look good before and after the full moon.
But even with the naked eye, a close conjunction can make the sky look even more amazing. The contrast between the red of Mars and the white of Jupiter will be especially striking. However, Mars’ brightness changes a lot. When it’s at its brightest, it’s about the same brightness as Jupiter. Right now, it’s 16 times less bright. They are so bright that, unless there are clouds, you should be able to see them from all but the dirtiest cities.
Most people in the world will miss this sight, though, because they can’t see the pair of planets in the evening from anywhere on Earth. The exact time they rise depends on where you live, but it’s usually between midnight and 3 am. To see this, you will mostly need to get up before astronomical twilight starts so that you have time to get through the thickest part of the atmosphere.
For people in Europe, Africa, west Asia, and the Americas, the closest time will be 14:53 UTC, which is during the day. The mornings before and after, though, will look almost as close.
Mars and Jupiter meet about every two and a half years, but the most recent one was almost twice as far away and could only be seen in the morning. In 2029, the gaps will be just under two degrees. The next one will be even wider, at more than a degree.
When planets are close to each other, that doesn’t always mean that their distance from each other is very small. Mars has been around the Sun for 687 days, but it is now less than 100 days past its perihelion, which means it is closer than usual. Even though Jupiter is a little closer than usual, it’s not really that close. To be as close as possible to each other, Mars has to be at its farthest point, and Jupiter has to be at its closest point. So this one is not unusual.
But if you want to see something beautiful, you will have to wait more than nine years to see it again.
Space Exploration
World’s first implantation of a titanium heart harnessing maglev technology
When looking for alien civilizations, it can be hard to know what to look for. During the search, we have mostly looked for signals and signs that we would send out (either on purpose or by accident) because we think that aliens will use similar technology since they can use the same physics.
It makes sense to do that, but it’s not the best thing to do. As we’ve seen over the last few hundred years on Earth, intelligent societies can quickly get rid of old technology that can be found as they learn more about the universe. As a clear example, we quickly switched from communicating with analog signals to digital ones. Of course, analog signals in the range we used for communication wouldn’t work very well on alien planets. However, it’s possible that alien civilizations could go “radio quiet” in about 100 years, which would make it even harder to find them.
Scientists have thought about what kind of signal a more advanced civilization might send and how advanced the technology would have to be in order to send it.
Even though it’s just a guess, we have some ideas about what kind of signal would make sense and what the message should say to make it clear that it comes from a smart being.
At that time, the plan was to study a region around 1.42 GHz, which is a well-known frequency where neutral hydrogen gives off radiation in interstellar space. Bryan Brzycki, a graduate student in astronomy at UC Berkeley, told Universe Today more about this. “Because this natural emission is common in the galaxy, it is thought that any intelligent civilization would know about it and might choose to send signals at this frequency to increase their chances of being found.” In the years since then, radio SETI has grown in every way, especially as technology has quickly improved.
Transmitting signals across the galaxy or universe, especially persistent signals that would maximize our likelihood of being detected, necessitates a substantial amount of energy, surpassing the capabilities of human beings. In 1963, Soviet astronomer Nikolai Kardashev endeavored to quantify the magnitude of energy required for transmitting signals containing information, as well as the corresponding levels of technological development that civilizations would need to achieve in order to accomplish this.
Kardashev categorized these theoretical civilizations into three classifications, depending on their capacity to exploit energy from their environment.
Type I civilizations are those that possess the capability to fully utilize the total energy resources of their planet, estimated to be approximately 4 x 1019 erg per second, for their own objectives. Type II civilizations possess the capability to exploit the energy emitted by their star, such as through the construction of Dyson Spheres. These are hypothetical colossal structures specifically designed to enclose stars and harness their energy. Type III civilizations refer to extraterrestrial civilizations that possess the ability to utilize the energy resources of their entire galaxy.
Despite the fact that Type II and III civilizations have significantly high energy production levels, Kardashev estimated that humanity would take approximately 3,200 and 5,800 years to reach those levels, based on Earth’s annual energy production growth rate of 1 percent. In 2020, a comprehensive scale was proposed that introduces the concept of a Type IV civilization capable of harnessing the energy of the entire observable universe. Based on our energy consumption, this team asserts that humans are presently classified as a Type 0.72 civilization.
According to Kardashev, it is highly improbable to detect Type I civilizations due to their relatively small but significantly greater energy output compared to our own. However, a Type I civilization, similar to ours, could potentially detect signals emitted by Type II and Type III civilizations using conventional radio telescopes, although they would not be able to respond to them. The premise of the work is that extraterrestrial civilizations would be transmitting scientific knowledge well ahead of our own, with the purpose of being detected by less advanced civilizations. However, this strategy may not be advisable for any civilization that seeks to ensure its survival.
Nevertheless, the Kardashev scale provides insight into the types of civilizations that possess the ability to transmit signals that we may soon have the capacity to detect. If advanced civilizations indeed exist (considering the immense expanse of the universe and its prolonged existence, this supposition is plausible), it would provide us with additional avenues of exploration, such as the search for colossal megastructures employed for energy extraction.
While we possess a relatively accurate understanding of our current and potential abilities, the universe has been in existence for significantly longer durations. Examining the capabilities of an advanced extraterrestrial civilization can provide insights into our own potential future possibilities. If our search of the celestial realm yields no evidence of Type III civilizations capable of harnessing energy on a galactic scale—a phenomenon that has yet to occur—it could indicate the existence of an obstacle that prevents intelligent species from attaining such an advanced stage. This obstacle, known as the Great Filter, may be looming in our future.
Physics
An interest They stepped on a rock and found something on Mars that had never been seen before
NASA’s curiosity has been looking into an interesting part of Mount Sharp for the past 10 months. It shows signs of a violent watery past, and chemical tests have shown that it contains many minerals, such as sulfates. The rover also broke open a rock by accident as it moved around. And inside it were crystals of pure sulfur.
On Mars, people had never seen pure sulfur before. Even though sulfates contain sulfur, there isn’t a clear link between how those molecules form and how the pure crystals form. Crystals of elemental sulfur can only form in a few different situations. And none of those were thought to happen in this area.
To find a field of stones made of pure sulfur is like finding an oasis in the middle of the desert, said Ashwin Vasavada, the project scientist for Curiosity at NASA’s Jet Propulsion Laboratory. “That thing shouldn’t be there, so we need to explain it.” It’s so exciting to find strange and unexpected things when exploring other planets.
The Gediz Vallis channel is the name of the area that Curiosity is exploring. A groove across Mount Sharp has been interesting for a long time, even before the rover started climbing it in 2014. From space, scientists could see that there were big piles of debris. But it wasn’t clear what caused them. Was it landslides or floodwaters from a long time ago that moved the stuff along the channel?
The answer has been found through curiosity. Some column A and some column B. Water-moved rocks are smoother and rounder. Sharp and angular are those that dry avalanches moved. There are both kinds of rocks in the mounds.
“This was not a quiet time on Mars,” said Becky Williams, a scientist from Tucson, Arizona, who works for the Planetary Science Institute and is the deputy principal investigator of Mastcam on Curiosity. “There was a lot of exciting stuff going on here.” We expect a number of different flows to happen down the channel, such as strong floods and flows with lots of rocks.
Curiosity is still looking into the Gediz Valley. When the ball rolls around and shows off its unique features, we can get very excited about the science being done here.
- Gadgets9 years ago
Why the Nexus 7 is still a good tablet in 2015
- Mobile Devices9 years ago
Samsung Galaxy Note 4 vs Galaxy Note 5: is there room for improvement?
- Editorials9 years ago
Samsung Galaxy Note 4 – How bad updates prevent people from enjoying their phones
- Mobile Devices9 years ago
Nexus 5 2015 and Android M born to be together
- Gaming9 years ago
New Teaser For Five Nights At Freddy’s 4
- Mobile Devices9 years ago
Google not releasing Android M to Nexus 7
- Gadgets10 years ago
Moto G Android 5.0.2 Lollipop still has a memory leak bug
- Mobile Devices9 years ago
Nexus 7 2015: Huawei and Google changing the game