Connect with us

Space Exploration

ESA and NASA start work on asteroid deflection system which could one day save civilization

blank

Published

on

asteroid-impact-mission

A massive asteroid impact is one of the greatest threats to life on this planet, and for human civilization in particular. Although a catastrophic collision is pretty unlikely, we’re remarkably ill-prepared to deal with it if such an event would occur. This is starting to change, however, as the European Space Agency (ESA) has recently started work on a project which could one day save humanity from a history-altering disaster.

Called the Asteroid Impact Mission (or AIM), it consists of a probe set to be launched in October 2020, which will then make its way to an asteroid known as Didymos. The target is a binary system made up of a larger, 800 meter object, and a smaller, 170 meter companion orbiting it, informally dubbed Didymoon. AIM will fly alongside Didymos at a distance of 10 to 35 km, from where it will conduct a series of measurements, while also dispatching a series of tiny CubeSats to take a closer look at the smaller object, as well as full-sized lander (the second time an ESA spacecraft will attempt something similar since Rosetta’s Philae landed on a comet in November 2014). This is expected to gather valuable information regarding the formation of our Solar System (since asteroids are some of the objects orbiting the Sun and have been largely unchanged in the last few billions of years) and the structure and composition of the asteroid, but it will also be there to witness the second, more spectacular phase of the mission.

AIM is just one part of a project called AIDA (Asteroid Impact and Deflection Assessment), conducted in collaboration with NASA and the Johns Hopkins University Applied Physics Laboratory, among others. In late 2022, with Didymos “just” 11 million km from Earth (that’s less than thirty times the distance from our planet to the Moon), NASA’s part of the mission will arrive at its destination. The Double Asteroid Redirection Test (DART) is a spacecraft weighing in at more than 300 kg, designed to crash into Didymoon at 6.25 km/s, and slightly alter its orbit. How slightly? Scientists aren’t sure, but AIM will hopefully still be close enough to find out (about 100 km away at the moment of impact).

The estimated change in velocity is somewhere on the order of 4 mm/s, which doesn’t seem like much when your goal is to stop a dangerous space rock from hitting our planet. But keep in mind this adds up over time, and also the Earth itself moves at about 30 km/s and has a diameter of about 12,700 km, making it a really small target when considering the scale of the Solar System. At huge distances and great speeds, the slightest of deflections can make a big difference!

Taken separately, each of these probes will reveal really interesting data. AIM will be the first probe to rendezvous with and study a binary asteroid, gathering data about its structure and helping scientists understand how these objects formed. Meanwhile, the change in the asteroid’s orbit after the impact with DART will also be measurable from Earth. This means that even if, for some reason, one of the AIDA’s two components won’t be launched or won’t work properly, the mission could still be at least partially successful.

Together, however, the two spacecraft could do some really amazing science. AIM will not only measure the size and shape of the impact crater, but also determine the characteristics of the ejected materials, thus providing valuable insights we might once need in order to move a city-killer asteroid (like the 170 meter Didymoon) into an orbit which is safe for us. This is important, since asteroids aren’t exactly solid chunks of material with fully understood properties and structures. You wouldn’t want, for instance, to hit one with a rocket only to see it break apart and continue hurtling to Earth as a hail of space rocks.

It’s nice to know that in just a few years we’ll be sending a space mission to smack an asteroid right in the face and change its path through the Solar System, though it doesn’t seem we’ll actually need to resort to something like this any time soon. Our truce with the Universe has been holding for some time, and there aren’t any signs of this changing for the foreseeable future.

Who doesn’t enjoy listening to a good story. Personally I love reading about the people who inspire me and what it took for them to achieve their success. As I am a bit of a self confessed tech geek I think there is no better way to discover these stories than by reading every day some articles or the newspaper . My bookcases are filled with good tech biographies, they remind me that anyone can be a success. So even if you come from an underprivileged part of society or you aren’t the smartest person in the room we all have a chance to reach the top. The same message shines in my beliefs. All it takes to succeed is a good idea, a little risk and a lot of hard work and any geek can become a success. VENI VIDI VICI .

Astronomy

Witness the rare celestial event of Mars and Jupiter reaching their closest proximity in the sky this week, a phenomenon that will not occur again until 2033.

blank

Published

on

blank

Mars and Jupiter will be only 0.3 degrees apart in the sky on August 14. From our point of view, this passage is very close. If you miss it, you won’t be able to see another one until 2033.

When two objects pass each other in the sky from our point of view, this is called a conjunction. Every time two planets came together, the closer one would block out the other because they would all be moving in a perfectly flat plane. The orbits of the planets are slightly different from those of the other planets, though, so they move slightly to the north and south of each other. Every time, that gap is a different size.

When two things happen close together, the results are especially stunning. Jupiter and Saturn were close enough to each other in 2020 that they could be seen in the same field of view through a telescope. This is a treat for people who like to observe the sky.

Being 0.5 degrees wide, the full moon will fit in any view that can hold the whole moon. This pair will also look good before and after the full moon.

But even with the naked eye, a close conjunction can make the sky look even more amazing. The contrast between the red of Mars and the white of Jupiter will be especially striking. However, Mars’ brightness changes a lot. When it’s at its brightest, it’s about the same brightness as Jupiter. Right now, it’s 16 times less bright. They are so bright that, unless there are clouds, you should be able to see them from all but the dirtiest cities.

Most people in the world will miss this sight, though, because they can’t see the pair of planets in the evening from anywhere on Earth. The exact time they rise depends on where you live, but it’s usually between midnight and 3 am. To see this, you will mostly need to get up before astronomical twilight starts so that you have time to get through the thickest part of the atmosphere.

For people in Europe, Africa, west Asia, and the Americas, the closest time will be 14:53 UTC, which is during the day. The mornings before and after, though, will look almost as close.

Mars and Jupiter meet about every two and a half years, but the most recent one was almost twice as far away and could only be seen in the morning. In 2029, the gaps will be just under two degrees. The next one will be even wider, at more than a degree.

When planets are close to each other, that doesn’t always mean that their distance from each other is very small. Mars has been around the Sun for 687 days, but it is now less than 100 days past its perihelion, which means it is closer than usual. Even though Jupiter is a little closer than usual, it’s not really that close. To be as close as possible to each other, Mars has to be at its farthest point, and Jupiter has to be at its closest point. So this one is not unusual.

But if you want to see something beautiful, you will have to wait more than nine years to see it again.

Continue Reading

Space Exploration

World’s first implantation of a titanium heart harnessing maglev technology

blank

Published

on

blank

When looking for alien civilizations, it can be hard to know what to look for. During the search, we have mostly looked for signals and signs that we would send out (either on purpose or by accident) because we think that aliens will use similar technology since they can use the same physics.

It makes sense to do that, but it’s not the best thing to do. As we’ve seen over the last few hundred years on Earth, intelligent societies can quickly get rid of old technology that can be found as they learn more about the universe. As a clear example, we quickly switched from communicating with analog signals to digital ones. Of course, analog signals in the range we used for communication wouldn’t work very well on alien planets. However, it’s possible that alien civilizations could go “radio quiet” in about 100 years, which would make it even harder to find them.

Scientists have thought about what kind of signal a more advanced civilization might send and how advanced the technology would have to be in order to send it.

Even though it’s just a guess, we have some ideas about what kind of signal would make sense and what the message should say to make it clear that it comes from a smart being.

At that time, the plan was to study a region around 1.42 GHz, which is a well-known frequency where neutral hydrogen gives off radiation in interstellar space. Bryan Brzycki, a graduate student in astronomy at UC Berkeley, told Universe Today more about this. “Because this natural emission is common in the galaxy, it is thought that any intelligent civilization would know about it and might choose to send signals at this frequency to increase their chances of being found.” In the years since then, radio SETI has grown in every way, especially as technology has quickly improved.

Transmitting signals across the galaxy or universe, especially persistent signals that would maximize our likelihood of being detected, necessitates a substantial amount of energy, surpassing the capabilities of human beings. In 1963, Soviet astronomer Nikolai Kardashev endeavored to quantify the magnitude of energy required for transmitting signals containing information, as well as the corresponding levels of technological development that civilizations would need to achieve in order to accomplish this.

Kardashev categorized these theoretical civilizations into three classifications, depending on their capacity to exploit energy from their environment.

Type I civilizations are those that possess the capability to fully utilize the total energy resources of their planet, estimated to be approximately 4 x 1019 erg per second, for their own objectives. Type II civilizations possess the capability to exploit the energy emitted by their star, such as through the construction of Dyson Spheres. These are hypothetical colossal structures specifically designed to enclose stars and harness their energy. Type III civilizations refer to extraterrestrial civilizations that possess the ability to utilize the energy resources of their entire galaxy.

Despite the fact that Type II and III civilizations have significantly high energy production levels, Kardashev estimated that humanity would take approximately 3,200 and 5,800 years to reach those levels, based on Earth’s annual energy production growth rate of 1 percent. In 2020, a comprehensive scale was proposed that introduces the concept of a Type IV civilization capable of harnessing the energy of the entire observable universe. Based on our energy consumption, this team asserts that humans are presently classified as a Type 0.72 civilization.

According to Kardashev, it is highly improbable to detect Type I civilizations due to their relatively small but significantly greater energy output compared to our own. However, a Type I civilization, similar to ours, could potentially detect signals emitted by Type II and Type III civilizations using conventional radio telescopes, although they would not be able to respond to them. The premise of the work is that extraterrestrial civilizations would be transmitting scientific knowledge well ahead of our own, with the purpose of being detected by less advanced civilizations. However, this strategy may not be advisable for any civilization that seeks to ensure its survival.

Nevertheless, the Kardashev scale provides insight into the types of civilizations that possess the ability to transmit signals that we may soon have the capacity to detect. If advanced civilizations indeed exist (considering the immense expanse of the universe and its prolonged existence, this supposition is plausible), it would provide us with additional avenues of exploration, such as the search for colossal megastructures employed for energy extraction.

While we possess a relatively accurate understanding of our current and potential abilities, the universe has been in existence for significantly longer durations. Examining the capabilities of an advanced extraterrestrial civilization can provide insights into our own potential future possibilities. If our search of the celestial realm yields no evidence of Type III civilizations capable of harnessing energy on a galactic scale—a phenomenon that has yet to occur—it could indicate the existence of an obstacle that prevents intelligent species from attaining such an advanced stage. This obstacle, known as the Great Filter, may be looming in our future.

Continue Reading

Physics

An interest They stepped on a rock and found something on Mars that had never been seen before

blank

Published

on

blank

NASA’s curiosity has been looking into an interesting part of Mount Sharp for the past 10 months. It shows signs of a violent watery past, and chemical tests have shown that it contains many minerals, such as sulfates. The rover also broke open a rock by accident as it moved around. And inside it were crystals of pure sulfur.

On Mars, people had never seen pure sulfur before. Even though sulfates contain sulfur, there isn’t a clear link between how those molecules form and how the pure crystals form. Crystals of elemental sulfur can only form in a few different situations. And none of those were thought to happen in this area.

To find a field of stones made of pure sulfur is like finding an oasis in the middle of the desert, said Ashwin Vasavada, the project scientist for Curiosity at NASA’s Jet Propulsion Laboratory. “That thing shouldn’t be there, so we need to explain it.” It’s so exciting to find strange and unexpected things when exploring other planets.

The Gediz Vallis channel is the name of the area that Curiosity is exploring. A groove across Mount Sharp has been interesting for a long time, even before the rover started climbing it in 2014. From space, scientists could see that there were big piles of debris. But it wasn’t clear what caused them. Was it landslides or floodwaters from a long time ago that moved the stuff along the channel?

The answer has been found through curiosity. Some column A and some column B. Water-moved rocks are smoother and rounder. Sharp and angular are those that dry avalanches moved. There are both kinds of rocks in the mounds.

“This was not a quiet time on Mars,” said Becky Williams, a scientist from Tucson, Arizona, who works for the Planetary Science Institute and is the deputy principal investigator of Mastcam on Curiosity. “There was a lot of exciting stuff going on here.” We expect a number of different flows to happen down the channel, such as strong floods and flows with lots of rocks.

Curiosity is still looking into the Gediz Valley. When the ball rolls around and shows off its unique features, we can get very excited about the science being done here.

Continue Reading

Trending