Connect with us

Science

The Recurrence of Unexploded Bombs from World Wars

blank

Published

on

blank

The Earth possesses a substantial quantity of explosive bomb material, amounting to millions of tons, primarily originating from the two global conflicts that occurred throughout the 20th century. Although a significant portion of these entities has been neglected and overlooked in recent decades, recent studies have revealed that a considerable number of them contain a chemical compound that renders them progressively more susceptible to detonation over time.

Amatol, a potent explosive compound derived from a blend of TNT and ammonium nitrate, was extensively employed in various explosive devices utilized throughout World War One and World War Two. These devices encompassed airplane bombs, shells, depth charges, and naval mines.

Additional frequently employed explosives, such as pure trinitrotoluene (TNT) or pentaerythritol tetranitrate (PETN), exhibit generally consistent stability throughout time and do not exhibit an increase in their level of hazard compared to their first stages. Nevertheless, Amatol exhibits an increasing susceptibility to effect over time when subjected to specific settings.

Two scientists from the University of Oslo and the University of Stavanger in Norway conducted a series of experiments where they applied weights to five samples of amatol explosives obtained from battlefields. This finding demonstrated that the bombs exhibited a higher degree of sensitivity to impact than previously acknowledged, and their volatility progressively escalated as they underwent aging.

The observed change in temperament can be attributed to the chemical reactivity of amatol with other substances present in the natural environment.

The study authors note that the presence of moisture, coupled with other conditions, can enhance the impact sensitivity of amatols.

It is widely acknowledged that explosive compositions, including ammonium nitrate, have the potential to undergo sensitization upon exposure to trace amounts of metals or interactions with metals. “The presence of these metal contaminants can undergo a chemical reaction with ammonium nitrate, resulting in the formation of complex salts and the sensitization of the mixture,” they state.

The presence of unexploded bombs from World War II is a frequent occurrence, often resulting in significant disruptions.

In February 2024, a German bomb weighing 500 kilograms (1,102 pounds) was found in a backyard in Plymouth, UK. More than 100 military personnel and specialists in bomb disposal were sent, while a significant number of surrounding inhabitants were compelled to flee, paradoxically signifying one of the most extensive evacuation endeavors since the conclusion of the Second World War.

Fortunately, the detonation of the device was executed without any casualties; nonetheless, such occurrences can occasionally culminate in terrible outcomes. In 2008, a total of 17 individuals sustained injuries at a building site located in the German town of Hattingen. The incident occurred when an excavator collided with a 250-kilogram (550-pound) bomb from the World War II era, resulting in its detonation.

Recent research suggests that occurrences involving unexploded bombs, such as the one described, have the potential to escalate into a significant issue. In conclusion, the researchers emphasize the importance of informing individuals responsible for dismantling unexploded explosives of the heightened sensitivity of amatol to impact.

The recent research findings have been published in the esteemed publication, Royal Society Open Science.

As Editor here at GeekReply, I'm a big fan of all things Geeky. Most of my contributions to the site are technology related, but I'm also a big fan of video games. My genres of choice include RPGs, MMOs, Grand Strategy, and Simulation. If I'm not chasing after the latest gear on my MMO of choice, I'm here at GeekReply reporting on the latest in Geek culture.

Astronomy

What is the most terrifying communication that humanity could receive from outer space?

blank

Published

on

blank

If there are extraterrestrial civilizations within a reasonable distance capable of detecting our unintentional transmissions, there exists a possibility, albeit small, that among the initial signals they intercept, they could receive the commencement of the 1936 Olympic Games. Therefore, in the unlikely event that they do receive these signals, we might come across a speech by Adolf Hitler during our first encounter with an alien species.

“Naturally, this was not the initial transmission,” clarified Seth Shostak, a senior astronomer at SETI, during an interview with RealClearScience. “However, it was emitted at a sufficiently high frequency to penetrate the ionosphere.”

In the movie Contact, this ultimately became the initial communication that mankind received from an extraterrestrial society. The entities promptly returned the signal to Earth, unaware of the profound consequences that transmitting broadcasts of Adolf Hitler from outer space would have on the targeted species they were endeavoring to establish communication with. It is similar to greeting a random person and then unintentionally reciting a chapter from Mein Kampf.

Fortunately, it is highly likely that we won’t encounter this issue because extraterrestrial civilizations shouldn’t be able to distinguish the signal strengths.

“The power consumption would have been minimal, and the antenna used would not have had a specific direction,” Shostak elaborated. “The notion that extraterrestrial beings might intercept it is highly improbable.”

However, it is possible that we may receive significantly more alarming initial communications, as individuals have been deliberating on X (Twitter) and Reddit.

It appears that people are primarily focused on receiving warnings from extraterrestrial civilizations right now, possibly as a result of a recent unnamed television series.

What would be the scariest message humanity could receive from outer space?
byu/silly_vasily inAskReddit

According to certain proposed resolutions to the Fermi Paradox, which ask why we haven’t detected any signs of advanced extraterrestrial civilizations, the explanation is that these civilizations are intentionally concealing their presence due to the apprehension of their own annihilation.

Another concern is the possibility of receiving an unclear message that extraterrestrial beings will provide us with limited information, apart from the fact that they are en route.

What would be the scariest message humanity could receive from outer space?
byu/silly_vasily inAskReddit

One theory, called the Zoo Hypothesis, is related to this topic. The theory posits that extraterrestrial beings possess knowledge of our existence but deliberately confine us within a designated “zoo” to allow for our evolutionary and societal development. This parallels humanity’s practice of preserving certain areas as nature reserves and refraining from engaging with uncontacted tribes. Based on this hypothesis, it is possible that we may receive contact once we have reached a satisfactory level of technological and societal development and potentially be accepted into a community of other galaxies.

Although there is a prevailing apprehension that initiating communication with an extraterrestrial civilization will probably elicit fear due to humanity’s historical tendency to fear the unfamiliar, there is a potentially more alarming notion.

Continue Reading

Medicine and Health

UnitedHealth reports that cybercriminals obtained health information for a significant section of the American population

blank

Published

on

blank

UnitedHealth Group, a major health insurance company, has verified that a ransomware attack targeted its health tech subsidiary, Change Healthcare, early this year. This cyber attack led to a significant breach of sensitive healthcare data belonging to American individuals.

UnitedHealth announced on Monday that a group of cybercriminals using ransomware gained access to files holding personal data and protected health information. The company stated that the affected data may encompass a significant section of the American population.

The health insurance corporation did not disclose the exact number of affected persons but stated that the process of examining the data is expected to span over several months. Only after this thorough analysis will the firm commence informing the affected individuals about the theft of their information in the hack.

Modify Healthcare manages insurance and billing for a large number of hospitals, pharmacies, and medical practices in the U.S. healthcare industry. It has extensive access to a vast amount of health data on almost 50% of the American population.

UnitedHealth stated that it has not yet observed any indication of doctors’ charts or complete medical histories being illicitly removed from its systems.

The acknowledgment that cybercriminals illicitly acquired personal health information of American citizens is made one week subsequent to the emergence of a new hacking collective, which commenced releasing fragments of the pilfered data with the intention of coercing the targeted organization into paying an additional ransom.

The group, known as RansomHub, released numerous files on its hidden internet leak platform, including the personal data of patients and internal documents associated with Change Healthcare. RansomHub threatened to auction the pilfered data unless Change Healthcare complied with their demand for a ransom.

UnitedHealth spokesperson Tyler Mason acknowledged that the corporation made payments to the cybercriminals, as stated in a communication. The corporation made a payment as a demonstration of its dedication to safeguarding patient data from being revealed. The company declined to disclose the sum it paid.

RansomHub is the second criminal organization to request a payment from Change Healthcare in exchange for releasing a hostage. According to reports, the prominent health technology company paid a sum of $22 million to a criminal organization known as ALPHV, based in Russia, in March. However, the criminal gang vanished after receiving the payment, leaving the affiliate responsible for the data theft without their share of the ransom.

RansomHub stated in their article, along with the released stolen data, that they possess the data and not ALPHV.

UnitedHealth, in its statement on Monday, recognized the publication of certain files but refrained from asserting ownership of the documents. UnitedHealth clarified that the information sent is not an official breach notification.

According to a story by The Wall Street Journal on Monday, the criminal hacking group associated with ALPHV gained unauthorized access to Change Healthcare’s network by utilizing stolen login information for a system that enables remote network access. The hackers infiltrated Change Healthcare’s network for a duration exceeding one week prior to implementing ransomware, thereby enabling them to pilfer substantial quantities of data from the company’s systems.

The cyberattack on Change Healthcare commenced on February 21, leading to persistent and extensive disruptions in the operations of pharmacies and hospitals throughout the United States. Physicians, pharmacists, and hospitals faced difficulties for several weeks in confirming patient benefits for drug delivery, managing inpatient care, and obtaining prior authorizations required for procedures.

A significant portion of the healthcare system in the United States came to a standstill, causing financial strain for healthcare providers due to increasing backlogs and persistent outages.

Last Monday, UnitedHealth disclosed that the ransomware attack had resulted in losses exceeding $870 million. The company’s sales for the first quarter of the year amounted to $99.8 billion, surpassing the expectations of Wall Street experts.

Andrew Witty, the CEO of UnitedHealth, is scheduled to testify before House members on May 1. Witty received over $21 million in total remuneration for the entire year of 2022.

Continue Reading

Medicine and Health

Scientist Investigating SARS-CoV-2 Virus Suggests Possible Indications of Simulation Existence

blank

Published

on

blank

A physicist specializing in the study of mutations in the SARS-CoV-2 virus has put forward intriguing evidence supporting a potential new law of physics known as the “second law of infodynamics.”. This discovery raises fascinating questions about the nature of our reality and the possibility of living in a simulated universe. In addition, he suggests that the study seems to suggest that the theory of evolution is incorrect, as it challenges the notion that mutations are completely random.

There is a great deal of complexity to delve into in this situation. It is important to note that making extraordinary claims necessitates providing extraordinary evidence. However, as Dr. Melvin Vopson elucidates in his research, we currently lack such evidence. Actually, we are far from reaching that point. Nevertheless, the concepts and findings presented are captivating and thought-provoking, even if additional research or examination may later disprove them.

In his most recent study, Vopson examined mutations in the SARS-CoV-2 virus from a unique perspective, focusing on information entropy rather than the traditional concept of entropy.

“The physical entropy of a given system is a measure of all its possible physical microstates compatible with the macrostate,” Vopson explained in the paper. “This is a property of the microstates in the system that do not carry any information.” Given the same system and the ability to generate N information states within it (such as by encoding digital bits), creating N information states results in the formation of N extra information microstates that overlap with the existing physical microstates. These extra microstates contain valuable information, and the increase in entropy they bring is known as information entropy.”

According to Vopson, there is a tendency for entropy to increase over time, but interestingly, information entropy tends to decrease. Consider the heat death of the universe, where the entire cosmos eventually reaches a state of thermal equilibrium. At this stage, the maximum value of entropy has been attained, although not in terms of information entropy. During heat death (or just before), the temperature range and potential states in any part of the universe become extremely limited. As a result, the number of possible events decreases and the amount of superimposed information decreases, leading to a decrease in information entropy.

Although it may offer an intriguing perspective on the universe, can it provide us with any novel insights, or is it merely a secondary and insignificant approach to describing entropy? According to Vopson, the concept has the potential to be a fundamental law that could impact a wide range of fields, including genetics and the evolution of the universe.

“Based on my research, it seems that the second law of infodynamics is an essential principle in cosmology.” According to Vopson’s article in The Conversation, this has broad applicability and significant scientific implications. “It is understood that the universe undergoes expansion while maintaining a constant total entropy, without any heat loss or gain.” However, it is important to note that entropy always increases according to the principles of thermodynamics. This indicates the presence of an additional form of entropy, namely information entropy, that serves to counterbalance the increase.

With the expertise of a seasoned scientist, Vopson observed the ever-changing SARS-CoV-2 virus throughout the course of the COVID-19 pandemic. Regular sequencing of the virus has been conducted to closely monitor its changes, primarily with the aim of developing new vaccines. Examining the RNA instead of DNA, he discovered a gradual decrease in information entropy.

One fascinating example of a rapidly mutating organism is a virus. According to Vopson, the pandemic has provided an exceptional opportunity for research, with the numerous variants of SARS-CoV-2 serving as an unprecedented test sample. The amount of data available is truly remarkable, as stated in a press release.

The COVID data provides strong evidence for the second law of infodynamics, and this research has the potential to unlock countless possibilities. Imagine examining a specific genome and determining the potential benefits of a mutation before it occurs. This technology has the potential to revolutionize various fields, such as genetic therapies, the pharmaceutical industry, evolutionary biology, and pandemic research.

According to Vopson’s perspective, this implies that mutations are not haphazard but rather subject to a governing principle that dictates that information entropy should either remain constant or decrease over time. If this discovery is verified, it would be truly remarkable, as it challenges our current understanding of evolution. Vopson draws attention to a previous experiment conducted in 1972, where a virus unexpectedly experienced a decrease in its genome over 74 generations under optimal conditions. He argues that this observation aligns with his second law of infodynamics.

“Mutations occur randomly and are then subject to natural selection, which determines their impact on an organism,” he explained. What if there’s an underlying process that fuels these mutations? Whenever we encounter something beyond our comprehension, we tend to label it as ‘random’, ‘chaotic’, or ‘paranormal’, when in reality, it is simply our own limitation in explaining it.

By adopting a deterministic perspective, we have the potential to harness the laws of physics to anticipate and forecast genetic mutations, or even their likelihood, prior to their occurrence.

Vopson suggests that the law could potentially provide an explanation for the prevalence of symmetry in the universe.

“A high level of symmetry is associated with a state of low information entropy, which aligns with the requirements of the second law of infodynamics,” stated Vopson in his paper. “Therefore, this fascinating observation seems to provide an explanation for the prevalence of symmetry in the universe; it can be attributed to the influence of the second law of information dynamics.”

The audacious assertions (with their need for additional evidence) don’t end there.

“According to Vopson in The Conversation, the second law of infodynamics is a cosmological necessity and seems to have a universal application. This suggests that the entire universe might be a simulated construct or a massive computer.”

“In order to efficiently run a simulation of our incredibly complex universe, it would be necessary to incorporate data optimization and compression techniques. This would help reduce the computational power and data storage requirements needed for the simulation.” This is precisely what we see happening everywhere, from digital data and biological systems to mathematical symmetries and the vast expanse of the universe.”

Confirmation of the “second law of infodynamics” wouldn’t necessarily imply that we are living in a simulation. It’s important to consider that the theory could still hold true even if that scenario isn’t the case. There are additional quantum mechanical effects that seem to indicate that we are not.

So, what are the next steps for testing this further? According to the principles of infodynamics, it is believed that information possesses mass, enabling it to interact with all other entities. There are indications that this might be true, as suggested by a study conducted in 2012 that found that irreversible erasure of information seems to release heat. According to Vopson’s findings, it suggests that this energy needs to be converted into mass before it can be erased, essentially treating information as a distinct form of matter that is on par with mass and energy.

Experimentally determining whether information possesses mass may not pose a significant challenge. Performing a basic experiment involves measuring the mass of a hard drive both before and after irreversible information erasure. Regrettably, our current capabilities are insufficient to handle the minute mass change anticipated.

However, if this theory holds true, it is highly probable that elementary particles would contain valuable self-information, as suggested by Vopson. For example, consider the fascinating process of informing an electron (perhaps the sole electron in the entire universe) about its unique characteristics, such as its charge and spin. An interesting experiment involves colliding particles and antiparticles at high velocities.

“The experiment entails eradicating the information stored within elementary particles by allowing them and their antiparticles (mirror images of the particles with opposite charge) to annihilate, resulting in a burst of energy known as ‘photons’ or light particles,” explained Vopson. “I have accurately determined the anticipated range of frequencies for the photons that will be produced using principles from information physics.”

Although the concept may not align with conventional thinking, the experiment comes at a relatively affordable price of $180,000 (which is insignificant for advocates of simulation theory like Elon Musk) and can be tested using existing technology. Indeed, it may provide valuable insights into the validity of the concept. Exploring this idea could prove to be intriguing, as we aim to either dismiss it or determine its significance in terms of mass.

Continue Reading

Trending