Connect with us

Engineering

Next-Generation “Invisibility Shields” are now available and more secure than before

blank

Published

on

blank

Previously confined to ancient myth and science fiction, invisibility cloaks have now become a tangible reality thanks to the efforts of a British start-up over the past four years.

Invisibility Shield Co. launched their inaugural product in 2022, garnering significant online attention and excitement. The corporation is currently seeking to introduce its most recent iteration of second-generation shields, which exhibit enhanced dimensions and stealth characteristics.

The shields do not necessitate any external energy source or magical abilities; rather, they employ optical illusions to create the perception of invisibility.

The panel exhibits a visual illusion of transparency, although it effectively presents a distorted perspective of its underlying contents. The device employs a meticulously designed lens array to effectively redirect the light that is reflected from the topic positioned behind it, moving it away from the observer positioned in front.

In order to divert light that is reflected from the background and the individual positioned behind, the shields employ lenses. According to Tristan Thompson, the designer of the shield, the vertical orientation of the lenses causes the light reflected from the person behind the shield to become more diffuse when spread out, compared to the light reflected from the wider background.

blank

The team’s second-generation invisibility shields are currently available for pre-order on the crowdfunding website Kickstarter, which aims to increase funding for the undertaking. Their initial versions were additionally supported through crowdfunding on Kickstarter, leading to the successful distribution of numerous invisibility shields worldwide.

The second-generation shields operate based on a similar fundamental principle, however, with several modifications included. Firstly, the lenses have been modified in terms of their shape and density in order to enhance resolution and optimize their performance for curved shields. It is worth noting that the previous iteration of the lenses was flat in design. According to Thompson, there has been a transition from a layered construction to the extrusion of each shield face from a single piece. This change has resulted in enhanced clarity compared to previous iterations, where layers of material were bonded together using an adhesive.

Currently, there are three distinct variations of invisibility shields being manufactured: the “Mini” variant, measuring 20 centimeters (8 inches) in height; the “Full Size” variant, measuring 91 centimeters (3 feet) in height; and the “Megashield” variant, measuring over 182 centimeters (6 feet) in height.

Notwithstanding their dimensions, the recently developed shields have been engineered to be compacted to a mere 1/30th of their original size, facilitating convenient portability for individuals.

Early riser The prices of the products are £54 (equivalent to around $68), £299 ($377), and £699 ($883), respectively, based on their different sizes. The delivery of these things is scheduled for the conclusion of 2024.

“The potential is boundless, but above all, these shields are highly enjoyable, providing an opportunity for play and excitement in their creation.” Our objective was to assess the extent to which we could advance this technology. A practical and functional invisibility shield that may be conveniently rolled up and slung over the shoulder.

As Editor here at GeekReply, I'm a big fan of all things Geeky. Most of my contributions to the site are technology related, but I'm also a big fan of video games. My genres of choice include RPGs, MMOs, Grand Strategy, and Simulation. If I'm not chasing after the latest gear on my MMO of choice, I'm here at GeekReply reporting on the latest in Geek culture.

Engineering

A drone is able to travel through the skies at speeds close to the speed of sound, namely at Mach 0.9

blank

Published

on

blank

A test flight of a new drone has taken off at speeds close to supersonic, going through the sky at Mach 0.9, which is 1,111 kilometers per hour (690 miles per hour).

But this is only the start of things. Venus Aerospace, the company that made the drone, hopes to get it to go nine times the speed of sound, or Mach 9.

The missile-shaped 2.4-meter (8-foot) drone was taken to a height of 3,657 meters (12,000 feet) on February 24 by an airplane. When the drone was let go, its hydrogen peroxide monopropellant engine was set to 80% power so that it wouldn’t go faster than Mach 1. It then flew for 16 kilometers (10 miles).

“Using a platform launched from the air and a rocket with wings lets us quickly and cheaply do the bare minimum test of our RDRE as a hypersonic engine.” Andrew Duggleby, CTO and co-founder of Venus Aerospace, said in a statement, “The team did a great job and now has a lot of data to use and tweak for the next flight.”

The new aerospace business, Venus Aerospace, is based in Houston, Texas. Its goal is to pave the way for hypersonic flight (speeds of Mach 5 and above).

In their most recent test flight, they did some testing for their Rotating Detonation Rocket Engine (RDRE). This engine is being made in collaboration with DARPA, the US State Department’s research agency that works on a lot of strange and cool technologies.

“Next is RDRE flight, and then hypersonic flight, which proves that the RDRE is the key to the hypersonic economy,” the company’s CEO and co-founder, Sarah “Sassie” Duggleby, said.

They want to make a car that can go to Mach 9, which is about 11,000 kilometers per hour (6,835 miles per hour).

This is way too fast of a speed. The NASA/USAF X-15 is still the fastest plane that a person has ever flown. In 1967, pilot Pete Knight took this jet to a crazy high speed of Mach 6.7, which is about 4,520 miles per hour or 7,274 kilometers per hour.

Concorde was a business supersonic plane that flew people for money until 2003. Its top speed was Mach 2, which is about 2,179 kilometers per hour (1,354 miles per hour).

Even worse, Venus Aerospace wants to let people fly on these Mach 9 trips. Venus Aerospace thinks it’s making good progress toward its pipe dream, even though there’s still a lot of work to be done.

Sarah Duggleby said, “One bite at a time is how you do hard things.”

Continue Reading

Engineering

Proxima Fusion secures $21 million in funding to further develop their ‘stellarator’ method for nuclear fusion

blank

Published

on

blank

The interest of venture capitalists in fusion startups has fluctuated in recent years. As per the findings of the Fusion Industry Association, nuclear fusion companies received a significant investment of over $6 billion in 2023, surpassing the previous year by $1.4 billion. However, the growth rate of 27% was slower compared to the previous year as investors faced external concerns like inflation.

Nevertheless, figures alone fail to provide a comprehensive narrative. Interest in the field has continued to grow as startups explore innovative methods to harness the sun’s power for clean and abundant energy.

In 2022, a major breakthrough was achieved in the field when the Department of Energy’s National Ignition Facility successfully generated a fusion reaction that generated surplus power compared to the energy needed to initiate the reaction. And then, in August last year, the team confirmed that their initial test was not merely a stroke of luck. The path to achieving true fusion power is still a lengthy one, but the exciting part is that it has moved beyond the realm of theory.

A new player in the industry is Proxima Fusion, which has emerged as the first spin-out from the prestigious Max Planck Institute for Plasma Physics (IPP). Proxima, a Munich-based company, has successfully secured €20 million ($21.7 million) in a seed round. This funding will enable them to embark on the development of their initial line of fusion power plants.

The company utilizes “quasi-isodynamic (QI) stellarators” that incorporate high-temperature superconductors into their technology. A stellarator is a ring of magnets that are carefully arranged to create a doughnut shape. This design allows the plasma, which is the source of fusion energy, to be contained. On the other hand, stellarators pose a significant challenge in terms of construction due to their unconventional magnet positioning and the need for meticulous engineering.

In 2022, Proxima Fusion developed a solution to tackle these challenges by combining engineering solutions and advanced computing. The Max Planck IPP, known for developing the Wendelstein 7-X (W7-X) experiment, the largest stellarator in the world, has expanded on research as a spin-out.

According to Dr. Francesco Sciortino, co-founder and CEO of Proxima Fusion, advancements in fusion technology are now within reach thanks to the utilization of AI to model plasma behavior. This breakthrough brings us closer to achieving viable nuclear fusion, as explained during a call with.

Earlybird-backed German startup Marvel Fusion uses laser containment to start the reaction. When I inquired about Proxima’s preference for stellarators, Sciortino explained, “By employing lasers, we direct intense heat towards a small pellet.” That releases energy through fusion, but you’re compressing something and allowing it to explode. Our focus is on the current state of confinement. So it’s not a sudden burst, but rather a consistent and ongoing process of operation.”

Sciortino, who successfully completed his PhD at MIT on tokamak nuclear projects, mentioned that Proxima will build upon the knowledge gained from the W7-X device. The W7-X device has received significant public investment, totaling over €1 billion. He mentioned that the estimated timeframe for achieving fusion energy is in the mid-2030s. It appears that we are considering a timeframe of approximately 15 years. Our objective is to build an intermediate device in Munich, most likely by 2031. If we are able to achieve that, then the mid-2030s could be a viable option.

The startup’s investors are just as confident

Ian Hogarth, a partner at one of Proxima’s investors, Plural, shared his enthusiasm for Proxima’s work, highlighting two key aspects that he finds particularly compelling. First, their stellarator has greatly benefited from two significant trends in high-temperature superconductors and advancements in computer-aided simulation of complex, multi-physics systems. And secondly, North Germany is home to the world’s most advanced stellarator.

He believes that Proxima’s status as the first spin-out from a government project will provide it with a competitive advantage for success. According to him, this situation exemplifies the concept of the ‘entrepreneurial state,’ where a startup can leverage significant public investment to thrive.

However, Proxima is not the sole contender in the competition for fusion. Helion Energy secured a substantial $500 million in Series E funding two years ago, with the support of prominent tech entrepreneur and OpenAI CEO Sam Altman. Furthermore, there are a minimum of 43 additional companies actively working on the development of nuclear fusion technologies.

Redalpine led Proxima’s seed round, which also included Bayern Kapital, DeepTech & Climate Fonds, and the Max Planck Foundation. Plural and existing investors High-Tech Gründerfonds, Wilbe, UVC Partners, and the Tomorrow Fund of Visionaries Club were also part of the round.

Continue Reading

Engineering

With the orchard vision system, farm tools can be turned into AI-powered data recorders

blank

Published

on

blank

Robots used in farming are not a new idea. We’ve seen machines that pick berries and apples, get rid of weeds, plant trees, move food, and more. Even though these tasks are thought to be the most important parts of automated systems, it’s always been that way in technology: it’s all about the data. One big thing that makes these goods valuable is the amount of useful data that their sensors gather.

Orchard Robotics’ system gets rid of the middle guy in a way. Even so, there is still a lot of value in automating these jobs when there aren’t enough workers. The young company’s system makes it easier to get started by adding a sensing module that can be attached to tractors and other farm vehicles.

There are many farmers who are willing to try new technologies that might help them get more crops or fill jobs that have been hard to staff. However, fully automatic robotic systems can be too expensive for many farmers to even consider.

As the name suggests, Orchard will start out by focusing on apple trees. The system’s cameras can capture up to 100 images per second, each of which records information about a different tree. After that, the Orchard OS software uses AI to turn the data into maps. That includes every bud or fruit that can be seen on every tree, where they are located, and even what color the apple is.

Charlie Wu, founder and CEO, says, “Our cameras take pictures of trees from bud to bloom to harvest. They use advanced computer vision and machine learning models we’ve built to get accurate information about hundreds of millions of fruits.” “This is a huge improvement over the old ways, which involved picking samples of maybe 100 fruits by hand.”

Thanks to the GPS on board, farmers can get a more accurate picture of how well their crops are doing, right down to the location and size of each tree. The company began at Cornell University in 2022. Even though it’s still pretty new, farmers have already started trying the tool. It looks like the field tests from last season were good enough to get real investors interested.

The Seattle-based company will announce a seed round of $3.2 million this week. The general catalyst will lead the round. Humba Ventures, Soma Capital, Correlation Ventures, VU Venture Partners, and Genius Ventures joined the raise. It comes after a pre-seed round of $600,000 that wasn’t made public.

Continue Reading

Trending

0
Would love your thoughts, please comment.x
()
x