Connect with us

Astronomy

Can humankind find alien intelligent life?

blank

Published

on

inteligent-lfe-seti

Humankind’s Space Age undoubtedly began in the 60’s. And 1961 can be seen as one of the most interesting years. First of all, Yuri Gagarin from the USSR made the first steps of mankind in cosmos and in the USA, astronomer Frank Drake formulated the famous equation that bears his name.

What is with this equation? Well, for those who have not yet heard of the famous Drake Equation, it tries to estimate the number of intelligent civilizations that could exist in the Milky Way and that could be contacted by us through our current electromagnetic methods.

Here’s how the equation looks like: N = Ns x fp x ne x fl x fi x fc x L

It doesn’t look that simple, so we’ll explain briefly what each value of the equation stands for and what is its meaning.

  • N = the number of civilizations in our galaxy with whom communication may be possible;
  • Ns = the average annual rate of star formation in our galaxy. Estimate is between 10 and 1;
  • fp = the number of stars that have planetary systems similar to our Solar System. Estimate is between 1 (each star has a planetary system) and 0.1 (one in ten stars has a system);
  • ne = the average number of planets that can support the emergence and the existence of life. Estimate is between 5 and 1.
  • fl = the number of planets on which life could occur at one moment in time. Estimate is 1.
  • fi = the number of planets on which intelligent life (civilizations) evolved. Estimate is 1.
  • fc = the number of civilizations that developed a technology which can be detected by other civilizations like our own. Estimate is 0.1 to 0.2.
  • L = the time in which a civilization reaches the capacity of communication with other stellar civilizations. Estimate is between 1000 and 100 million years.

If we carefully review each value of the equation, it is clear that none could be determined accurately by modern science. Furthermore as we move from left to right into the equation, estimating each factor’s value becomes controversial, so the latter elements are rather speculative and the values that a person would assign them might say more about that person’s beliefs than scientific facts.

There are dozens of scientific papers that deal with this equation and juggle with its parameters. One such paper stands out as it adds the well-established principles of statistical probability to the equation. In 2010, the Italian astronomer Claudio Maccone published in the Acta Astronautica journal his own version of the equation named the Statistical Drake Equation (SDE). Mathematically it is more complex and more robust that the Classic Drake Equation (CDE).

SDE is based on the Central Limit Theorem which states that having a sufficient number of random independent variables with finite mean value and dispersion, these variables will be distributed in an environment according to the Gaussian bell. So, all the seven parameters of the equation become independent positive variables.In his paper, Maccone tested his SDE using the parameters normally accepted by the SETI (Search for Extraterrestrial Intelligence) community, and the results could mean good news for the E.T. hunters.

Although the numerical results were not the primary objective of the astronomer, Maccone estimated that our galaxy could host 4,590 extraterrestrial civilizations. If we assign the same values to the Classical Drake Equation we get only 3,500. So, the SDE adds over 1,000 possible civilizations to the initial estimate. Also, SDE has an advantage over CDE, because it incorporates the concept of standard variation (or margin), a kind of margin of error for the mean values. In this case the standard variation is quite high – 11,195. In other words, the SDE states that in our Milky way galaxy could be between 0 and 15,785 extraterrestrial civilizations.

If these E.T. civilizations are at equal distances from each other, they could be separated, on average by 28,845 light-years.This value is much too high for us to communicate with aliens, even though the electromagnetic radiation travels at the speed of light (299,792.4 km/s). So, even with so many potential advanced civilizations, interstellar communication would still be a major technological challenge for us. However, according to SDE the average distance that we should expect to find intelligent life might be 2,670 light-years from Earth.

So there would be some slim chances that we can contact an alien civilization. At only 500 light-years the chances of detecting a signal from E.T. are almost 0. This is exactly the radius within which our current technology allows us to search for intelligent life radio signals.  So the “Great Silence” that radio telescopes detected so far is not daunting. Our signals must reach a little farther – over at least 900 light years – before they have a real chance to intersect with an advanced alien civilization.

Who doesn’t enjoy listening to a good story. Personally I love reading about the people who inspire me and what it took for them to achieve their success. As I am a bit of a self confessed tech geek I think there is no better way to discover these stories than by reading every day some articles or the newspaper . My bookcases are filled with good tech biographies, they remind me that anyone can be a success. So even if you come from an underprivileged part of society or you aren’t the smartest person in the room we all have a chance to reach the top. The same message shines in my beliefs. All it takes to succeed is a good idea, a little risk and a lot of hard work and any geek can become a success. VENI VIDI VICI .

Astronomy

What is the most terrifying communication that humanity could receive from outer space?

blank

Published

on

blank

If there are extraterrestrial civilizations within a reasonable distance capable of detecting our unintentional transmissions, there exists a possibility, albeit small, that among the initial signals they intercept, they could receive the commencement of the 1936 Olympic Games. Therefore, in the unlikely event that they do receive these signals, we might come across a speech by Adolf Hitler during our first encounter with an alien species.

“Naturally, this was not the initial transmission,” clarified Seth Shostak, a senior astronomer at SETI, during an interview with RealClearScience. “However, it was emitted at a sufficiently high frequency to penetrate the ionosphere.”

In the movie Contact, this ultimately became the initial communication that mankind received from an extraterrestrial society. The entities promptly returned the signal to Earth, unaware of the profound consequences that transmitting broadcasts of Adolf Hitler from outer space would have on the targeted species they were endeavoring to establish communication with. It is similar to greeting a random person and then unintentionally reciting a chapter from Mein Kampf.

Fortunately, it is highly likely that we won’t encounter this issue because extraterrestrial civilizations shouldn’t be able to distinguish the signal strengths.

“The power consumption would have been minimal, and the antenna used would not have had a specific direction,” Shostak elaborated. “The notion that extraterrestrial beings might intercept it is highly improbable.”

However, it is possible that we may receive significantly more alarming initial communications, as individuals have been deliberating on X (Twitter) and Reddit.

It appears that people are primarily focused on receiving warnings from extraterrestrial civilizations right now, possibly as a result of a recent unnamed television series.

What would be the scariest message humanity could receive from outer space?
byu/silly_vasily inAskReddit

According to certain proposed resolutions to the Fermi Paradox, which ask why we haven’t detected any signs of advanced extraterrestrial civilizations, the explanation is that these civilizations are intentionally concealing their presence due to the apprehension of their own annihilation.

Another concern is the possibility of receiving an unclear message that extraterrestrial beings will provide us with limited information, apart from the fact that they are en route.

What would be the scariest message humanity could receive from outer space?
byu/silly_vasily inAskReddit

One theory, called the Zoo Hypothesis, is related to this topic. The theory posits that extraterrestrial beings possess knowledge of our existence but deliberately confine us within a designated “zoo” to allow for our evolutionary and societal development. This parallels humanity’s practice of preserving certain areas as nature reserves and refraining from engaging with uncontacted tribes. Based on this hypothesis, it is possible that we may receive contact once we have reached a satisfactory level of technological and societal development and potentially be accepted into a community of other galaxies.

Although there is a prevailing apprehension that initiating communication with an extraterrestrial civilization will probably elicit fear due to humanity’s historical tendency to fear the unfamiliar, there is a potentially more alarming notion.

Continue Reading

Astronomy

Orbex’s recent funding could expedite the launch of its Prime microlauncher into space

blank

Published

on

blank

Orbex, a small launch company based in the UK, got more money from backers, including Scotland’s national bank. The company is now getting ready for its first orbital launch, but the date for that mission has not yet been set.

With its start in 2015, Orbex is one of only a few companies in Europe racing to make the next generation of launch vehicles. The retirement of the Ariane 5 and big delays to the Ariane 6 and Vega C rockets have left a huge gap that these companies are trying to fill. Without these vehicles, there is almost no native launch capacity coming out of Europe.

But Orbex also has a chance because of his absence. The company is working on what is sometimes called a “microlauncher.” It is a two-stage vehicle called Prime that is only 19 meters tall and can take up to 180 kilograms of payload. Rocket Lab’s Electron is the most similar. It’s only a meter shorter, but it can take up to 300 kilograms.

The fact that Orbex is small is not a problem for the company. In fact, Orbex CEO Philip Chambers told TechCrunch via email that the company is seeing “positive market conditions” for its product.

“There is a pent-up demand for sovereign launch capabilities,” he said. “We are seeing an exponential growth of satellites being launched into LEO, and demand for launch is far exceeding supply. At the moment, it’s not possible to launch a single kilogram from Europe.” “We will let European customers choose how to launch their own payloads and let them launch European payloads from European soil.”

Prime will take off from a new spaceport being built with money from the UK’s national space agency in Sutherland, which is in northern Scotland. The end goal is to use a patented recovery technique that the company calls REFLIGHT. This is an interstage device that sits between the rocket stages. When the booster comes off, four “petals” will unfold and, along with a parachute, create enough drag for a soft landing in the ocean.

It’s possible that a bigger car will be made in the future, but Chambers made it clear that Prime was the company’s top goal. He did say, though, that many of the rocket’s main technologies could be used with bigger packages.

Considering the laws of physics, it would be logical for Orbex to explore the option of using larger vehicles in order to compete on cost per kg.

The company is starting its Series D round with £16.7 million ($20.7 million) in new funding, including investments from Octopus Ventures, BGF, Heartcore, EIFO, and other contributors. Following the closure of a £40.4 million ($50 million) Series C in October 2022, Orbex has secured additional capital. Although a spokesperson has confirmed that the new funding will assist Orbex in accelerating the development of Prime, ensuring its readiness and scalability for the launch period, the specific launch window has not been announced yet.

Continue Reading

Astronomy

The Ingenuity team at NASA has received their last communication, however, the Mars helicopter is still operational

blank

Published

on

blank

The NASA Ingenuity team said goodbye to the helicopter robot and got one last message before splitting up. But ingenuity isn’t really dead yet; it will still be collecting data on Mars.

It’s a great little robot, and in April 2021, it was the first to fly powered and controlled on a planet other than Earth. That’s not easy to do because conditions on Mars are so different.

“The Red Planet has a much lower gravity—one-third that of Earth’s—and an extremely thin atmosphere with only 1% of Earth’s pressure at the surface,” NASA said in a press release after Ingenuity’s first flight. “This means there are relatively few air molecules with which Ingenuity’s two 4-foot-wide (1.2-meter-wide) rotor blades can interact to achieve flight.”

It was planned for the helicopter, which was really just a prototype, to make five flights over 30 days on Mars. Instead, it made 72 flights over 1,000 days. NASA started to use it to get a bird’s-eye view of Mars and find interesting places for Perseverance to go back and look at more closely.

On the 72nd flight, unfortunately, Ingenuity had to make an emergency landing and lost touch with Perseverance. When they got in touch again, pictures from the helicopter showed that a rotor was badly damaged, so Ingenuity would not be able to fly again.

blank

Even though the helicopter can’t fly anymore, it can still gather information and send it to Perseverance. Perseverance then sends the information to Earth through NASA’s Deep Space Network. Before the Ingenuity team broke up, they got one last message from Ingenuity and ate cake to celebrate.

“I’m sorry, Dylan Thomas, but Ingenuity will not be going gently into that good Martian night,” said Josh Anderson, lead of the Ingenuity team at JPL. “It’s hard to believe that she still has something to give after more than 1,000 days on Mars’ surface, 72 flights, and one rough landing.” Because of how hard this amazing team worked, not only did Ingenuity do better than we thought it would, but it may also teach us new things in the years to come.

After stopping in “Valinor Hills” to rest, the robot’s job will be to gather data while it’s still, hopefully learning useful things about the planet’s environment before future missions with people.

Continue Reading

Trending