Connect with us

Science

Amateur astronomers took a picture of the first supernova in a galaxy 22 million light-years away

blank

Published

on

blank

Not long after one of the closest supernovae of the century was found, another one just a little farther away has shown up. Professional pictures of the star exploding have not been released yet, but amateur pictures are filling in the gaps. However, many of the amateurs live too far north to be able to take part.

Since the invention of the telescope, there haven’t been any supernova explosions in our galaxy, though there might be some that are dust-obscured. Adding 1987a to our local group of galaxies is the only one that astronomers have seen in their entire careers. That’s a shame, because these are some of the coolest and most useful astronomical events, and a galaxy the size of the Milky Way should have one about every hundred years.

That makes the next ring of galaxies beyond the local group even more important. This century, there have been five galaxies that are 22 million light-years away or less. This new one, SN 2024ggi, was seen for the first time on April 11 and may still be getting brighter.

Last year, small telescopes were able to see the most recent nearby supernova, 2023xf. As an added bonus, it was in the Pinwheel galaxy, which is always a popular place for amateur astronomers to look.

SN 2024ggi is in NGC 3621, which isn’t quite as impressive because we see it all the way along one edge. Even so, if you have a good enough telescope, it’s still a beautiful sight. NGC 3621 is 22 million light-years away, which is a million more than the Pinwheel. However, these numbers aren’t exactly accurate, so it’s possible that it’s a little closer. Both are going almost the opposite way. The pinwheel is so far to the north that it never sets in Europe or most of North America. While NGC 3621 is at 33 degrees south, it’s almost impossible to see from Britain and can only be seen for a short time from most of the US.

Magnitude is a measure of how bright a star is. Magnitudes 5 and below can be seen with the naked eye in dark skies, while magnitudes above 5 get fainter.

ATLAS, which stands for the Asteroid Terrestrial-Impact Last Alert System, made the new find. ATLAS’ main job is to look for space rocks close by. With four telescopes on three continents, it now finds more supernovae than any other sky survey. When it was found, SN 2024ggi was about 19th magnitude, which means that backyard astronomers would need a very large telescope.

That’s not unusual; just this year, dozens of supernovae were recorded at 16th or 14th magnitude. However, because they were so far away, very few got brighter than that. At the same brightness, 2023ixf was seen, but it got brighter by more than a hundred times and reached its brightest point at 10.9. It has gone down to 12th magnitude after almost a year.

Many people say that 2024 g is brighter than a 12th magnitude star nearby, even though official records show that it is getting brighter to 14th magnitude. There would be a lot more people with the right tools to catch it if that’s the case.

Five supernovae have been seen in the Pinwheel galaxy since 1900 because it is so busy making new stars. This is the first supernova seen in NGC 3621.

As Editor here at GeekReply, I'm a big fan of all things Geeky. Most of my contributions to the site are technology related, but I'm also a big fan of video games. My genres of choice include RPGs, MMOs, Grand Strategy, and Simulation. If I'm not chasing after the latest gear on my MMO of choice, I'm here at GeekReply reporting on the latest in Geek culture.

Medicine and Health

By getting COVID vaccines on a regular basis, you protect your immune system against new viruses and variants

blank

Published

on

blank

A new study suggests that getting your COVID shots on a regular basis might have benefits beyond just protecting you against the newest strains that are going around. The Washington University School of Medicine led a group of researchers who found that the vaccine makes antibodies that are effective against a wide range of variants. These antibodies might even help us build our defenses against future coronaviruses.

This is why immune imprinting is bad:
In the past four years, we’ve heard a lot about how COVID-19 is similar to and different from influenza, which is another very dangerous respiratory virus.

Since the flu is a seasonal disease (unlike COVID, as far as we know), scientists have to make changes to the flu vaccine every year based on their best guesses about which strains of the virus will be causing the most trouble. But there’s a catch. The immune system makes memory cells in response to a vaccine one year, but they don’t always make room for new cells that make antibodies the next year. This makes the immune response weaker. It’s called imprinting when this happens.

There was no information on whether imprinting could hurt the effectiveness of the COVID-19 vaccine like it could with the flu shot. Even though it doesn’t happen every year like the flu, we all know how easily this virus can change into new types, so the vaccines have been updated several times.

What the research showed
To find out more, the researchers looked at antibodies from people and mice that had been vaccinated with mRNA COVID-19. The vaccines were designed to target two different types of COVID-19: the older OG variant from the time of social distance and running out of toilet paper, and the newer Omicron variants. At some point during the pandemic, some of the people who took part had also gotten antibodies from a natural COVID infection.

There was evidence of imprinting from the first vaccine, but it didn’t seem to be having the bad effects that it can have with flu shots. Not many of the antibodies that were found were specific to either original COVID or Omicron. Instead, most of them were cross-reactive, which means they recognized both types of the virus.

The antibodies were then put to the test against a group of different coronaviruses. Two types of SARS-CoV-2 came from different Omicron lineages. These included a pangolin coronavirus, the SARS virus from the 2002–2003 epidemic, and the virus that caused Middle Eastern Respiratory Syndrome (MERS). The antibodies were able to stop all of these viruses except for MERS, which is more different from the others in terms of how it evolved.

The combination of the different vaccines was what the scientists found to be the key to this cross-reactivity. When people were only vaccinated against the original COVID variant and not given an Omicron booster, they did not make the same range of antibodies. This means that staying up-to-date on the newest variants and regularly immunizing more people against them could have even bigger benefits than just keeping COVID away.

When COVID hit, we had to start over. Most people had never seen or heard of a virus like this before, so there wasn’t a level of immunity in the population to help protect us. If people keep getting vaccinated against COVID, this study raises the interesting possibility that things would be very different if a new coronavirus showed up.

“We don’t know for sure if getting a new COVID-19 vaccine every year would protect people against new coronaviruses, but it seems likely,” said Michael Diamond, a senior study author. “Based on these results, it looks like these cross-reactive antibodies may help protect against a pandemic caused by a related coronavirus if they don’t go away quickly. To be sure, we would have to keep an eye on their levels over time.”

What’s new with vaccines and the different types of FLiRT?
That all sounds pretty good, though. Just recently, there was news about a whole new set of COVID variants. How are our efforts to vaccinate people right now?

The FLiRT variants are the most recent ones to receive a lot of calls around the world. One in particular, KP.2, has recently passed JN.1 as the most common virus in the US, causing the second most infections.

Some people believe that KP.2’s mutations may have protected it from infections and vaccines in the past. However, this new research backs up what many health experts have already said: all the antibodies you’ve made in the past will still be helping to protect you.

Staying healthy is important, though, so if you can get an up-to-date shot where you live (especially if it’s been a while since your last one), you might want to think about it, or you could wait until the next round of updates. Not long ago, epidemiologist Adrian Esterman told Newsweek, “There will be a new vaccine available around September that will give much better protection. It will be based on either JN.1 or one of the FLiRT subvariants.”

The AstraZeneca vaccine was taken off the global market not long ago, which also changed the vaccine landscape. When new types of viruses came out, AstraZeneca did not change the formula for their vaccine, Vaxzevria. This is different from some other companies that make mRNA vaccines, for example.

Without these updates, Vaxzevria probably isn’t working as well as it used to, and because of a drop in demand, AstraZeneca is said to have decided to stop making it for business reasons. When it was first made, it was an important part of the global pandemic response. But now that there are so many other options—something we could only dream of in the darkest days of 2020—it seems like it’s done its job.

But if you were one of the millions of people who got this vaccine, this new antibody research should give you confidence that the good effects could last for a long time after the vaccine is no longer available. This is because of any booster shots you have had or will continue to get.

The study was written up in Nature.

Continue Reading

Medicine and Health

Blueberry wine might be the next big thing in health food

blank

Published

on

blank

Currently, we are in the midst of the blueberry season, which entails an abundance of delectable blue-colored fruits making their way to our tables. If you have an excess of blueberries that cannot be frozen, baked, or blended, one possible solution could be to transform them into wine. However, a recent study suggests that the extent to which you can maximize the advantages of the wine may depend on the specific method used to produce it.

Blueberries are not only tasty, but they are also regarded as a superfood. Indeed, the term used is primarily for marketing purposes, but these products are rich in essential micronutrients such as vitamins and minerals. In addition, they contain numerous compounds that possess antioxidant properties, which certain scientists believe provide health advantages to individuals who consume them as snacks.

Nevertheless, the University of Córdoba researchers aimed to examine whether the nutritional properties of blueberry wine could be altered through food processing, particularly under varying conditions.

The team utilized blueberries sourced from Huelva, a region in southern Spain. They crushed the blueberries and combined them with a sugar solution, resulting in a total volume of 8 liters of blueberry juice. Subsequently, they introduced yeast into the mixture. An analysis was conducted on the juice to determine the concentration of specific antioxidant compounds, including anthocyanins, flavonols, flavan-3-ols, tannins, and Vitamin C, as well as the overall antioxidant activity.

Subsequently, the juice was evenly distributed into eight separate flasks, which were then divided into two distinct groups: four flasks were placed in a water bath at a temperature of 63°F, while the remaining four flasks were placed in a bath at a temperature of 70°F. Within each bath, two of the flasks underwent partial fermentation, resulting in a sweet wine, while the remaining two flasks underwent complete fermentation, resulting in a dry wine.

By extracting a small quantity of wine from each flask, the team conducted an analysis of antioxidant levels and effectiveness in the wine samples and then compared their findings to the original juice.

The findings demonstrated that the blueberry wine effectively retained certain advantageous properties of the fruit. Irrespective of variations in temperature or fermentation duration, all the produced wines exhibited greater antioxidant activity compared to the initial blueberry juice.

However, it is worth noting that the various conditions did seem to influence the concentration of the distinct antioxidant compounds. Extended fermentation durations resulted in decreased levels of anthocyanins, flavonols, and tannins, while the concentrations of flavan-3-ols actually increased over time.

The temperature also appeared to have an impact, as the wine stored at a higher temperature contained approximately half the amount of vitamin C compared to the wine fermented at a lower temperature.

The study’s findings indicate that the process of making blueberries into wine optimizes the advantages of the fruit, while the temperature and duration of fermentation have a significant impact on the composition of the wine.

They do not specify the taste quality, as taste is more subjective than antioxidant activity.

The research is published in ACS Food Science & Technology.

Continue Reading

Engineering

Testing the longest quantum network on existing fiber optics in Boston

blank

Published

on

blank

Imagine a world where information can be transmitted securely across the globe, free from the prying eyes of hackers. Its incredible power lies in the realm of quantum mechanics, making it a groundbreaking advancement with immense potential for the future of telecommunications. There have been obstacles to conquer, but there has also been notable progress, exemplified by a recent achievement from researchers at Harvard University.

Using the existing fiber optics within the city of Boston, the team successfully demonstrated the longest transmission between two nodes. The fiber path covered a total distance of 35 kilometers (22 miles), encircling the entire city. The two nodes that connected to the close path were situated on different floors, making the fiber route not the shortest but rather an intriguing one.

Quantum information has been successfully transmitted over longer distances, showcasing remarkable advancements in this experiment that bring us closer to the realization of a practical quantum internet. The real breakthrough lies in the nodes, going beyond the mere utilization of optical fibers.

A typical network utilizes signal repeaters made of optical fiber. These devices incorporate optical receivers, electrical amplifiers, and optical transmitters. The signal is received, transformed into an electrical form, and subsequently converted back into light before being transmitted. They play a crucial role in expanding the reach of the original signal. And in its present state, this is not suitable for quantum internet.

blank

The issue lies not in the technology, but rather in the fundamental principles of physics. Copying quantum information is not possible in that manner. Quantum information is highly secure due to its entangled state. The Harvard system operates by utilizing individual nodes that function as miniature quantum computers, responsible for storing, processing, and transferring information. This quantum network, consisting of only two nodes, is currently the most extensive one ever achieved, with nodes capable of such remarkable functionality.

“Demonstrating the ability to entangle quantum network nodes in a bustling urban environment is a significant milestone in enabling practical networking between quantum computers,” stated Professor Mikhail Lukin, the senior author.

At each node, a tiny quantum computer is constructed using a small piece of diamond that contains a flaw in its atomic arrangement known as a silicon vacancy center. At temperatures close to absolute zero, the silicon vacancy has the remarkable ability to capture, retain, and interconnect pieces of data, making it an ideal choice for a node.

“Given the existing entanglement between the light and the first node, it has the capability to transmit this entanglement to the second node,” elucidated Can Knaut, a graduate researcher in Lukin’s lab. “This phenomenon is known as photon-mediated entanglement.”

The study has been published in the prestigious journal Nature.

Continue Reading

Trending