Connect with us

Astronomy

Newly discovered Super Earth planets “unlike anything in our solar system”

blank

Published

on

new-super-earth-planets-discovered

What’s better than Earth? A Super Earth of course! Then again, it all depends on how we define “better.” True to its name, a Super Earth is a rocky planet that’s quite similar to our own world in some ways, but it’s usually also several times more massive, hence the term “Super.” In regards to the “better” part, the fact that such planets are bigger could offer many benefits to human beings, if we ever manage to reach them that is. The gravity would probably be quite different than what we’re accustomed to, but that’s a minor problem compared to some of the other challenges we’ll have to overcome if we ever want to reach a Super Earth.

Just a couple of days ago, a group of astronomers managed to locate no less than 3 new Super Earth planets and they all orbit the same star, fondly known as HD 7924. What’s interesting about this discovery is that the trio of planets are pretty close to our own. The bad news is that “pretty close” actually means quite far when measuring distances between celestial bodies, with the three planets and their host start in fact being located 54 light years away from Earth. By comparison, New Horizons has been travelling for over 9 years and it’s barely now approaching Pluto despite being the fastest spacecraft ever built by humans. Needless to say, we’re not likely to leave our own solar system, let alone reach a Super Earth any time soon with our current technology.

Regardless, the mere fact that we can observe these distant planets is interesting enough, especially since their behavior is very strange. Specifically, the three planets are orbiting extremely close to HD 7924, completing a full rotation in just 5, 12, and 24 days, respectively. To give you a frame of reference, the closest planet to our sun (Mercury) has an orbital period of 88 days while Venus’ is 225 days and Earth’s is of course around 365 days. You can only imagine how close the three Super Earth planets must be to their star and how fast they’re moving for them to achieve a complete rotation in just a few days. “The three planets are unlike anything in our solar system, with masses 7-8 times the mass of Earth and orbits that take them very close to their host star,” says Lauren Weiss from the University of California, Berkeley.

It goes without saying that these Super Earth planets are unlikely to sustain life any time soon, so I guess we shouldn’t be too upset that we won’t be able to visit them any time soon. Observing planets such as the ones orbiting HD 7924 is something that we’re still pretty new at, but we already managed to find a plethora of them in just the last 10 years and it seems like at least a couple of new ones are discovered each month. Some of them are even located in the so-called Goldilocks zone of their solar system, an area not too close and not too far from their host star. This means that at least in theory life could be possible on such planets, although we can’t be certain of this just yet. Earlier this year, NASA stated that we’ll have definitive evidence for the existence of alien life in a decade or two and maybe they’ll find it on a Super Earth planet first. If not, the space agency’s warp drive experiments seem to be progressing nicely as of late, so maybe one day we’ll actually be able to visit exoplanets and see for ourselves if there’s life on them.

Astronomy

The Eta Aquariids meteor shower is occurring this month, and its peak can be observed at a specific time

blank

Published

on

blank

Currently, Earth is undergoing one of its three most active meteor showers. The Eta Aquariids, remnants of Halley’s comet, are observed during the month of May. During this period, Earth approaches the comet’s orbit at a distance of approximately 9.7 million kilometers (6 million miles), which is close enough to collect residual dust particles.

The Eta Aquariids exhibit a frequency of up to one meteor per minute, although this level of activity is limited to individuals residing near the equator and in the southern tropics. For the rest of the population on Earth, it is anticipated that there will be a more moderate but still highly respectable rate of 10 to 30 meteors per hour. The optimal time in the Northern Hemisphere is during the pre-dawn period when the sky is at its maximum darkness, particularly in areas located away from urban centers. The midnight hours are also favorable in the Southern Hemisphere.

Allow approximately 30 minutes for your eyes to adapt; thus, it is important to take this into account. The duration of the meteor shower spans from April 19 to May 28 annually. The zenith of meteor activity is anticipated to occur during the nights of May 5th and 6th; however, there is a high probability of observing numerous meteors throughout the entire week.

Our orbit intersects with the orbit of Halley’s comet twice annually. In May, this event results in the occurrence of a meteor shower. In October, the remnants form the Orionid meteor shower. The Eta Aquariids derive their name from their origin at the star Eta Aquarii.

Halley’s comet exhibits significant luminosity and possesses a comparatively brief orbital period, completing one revolution around the sun every 76 years. For a period of more than 2,250 years, humans have been engaged in the act of observing it. The earliest documented sighting of this phenomenon occurred in 240 BCE and was recorded in the Book of Han by Chinese astronomers in 12 BCE. The year 1066 witnessed the depiction of this event in two significant historical records: the Bayeux Tapestry, which documented the Norman Conquest of England, and the petroglyphs created by the Chaco, indigenous Americans in present-day New Mexico.

The appearance of a comet in 1301 inspired Giotto di Bondone to depict the Star of Bethlehem as a comet, which had a lasting influence on its portrayal for the next seven centuries. Although observations had been made for thousands of years, it was not until 1705 that Edmond Halley discovered the periodicity of them.

The most recent observation of the object from Earth occurred in 1986, and it is expected to return to the inner solar system in 2061. Currently, it is returning to its original position after reaching its maximum distance from the sun in December.

Continue Reading

Astronomy

NASA and ESA are making preparations for the imminent close approach of the near Earth object Apophis

blank

Published

on

blank

NASA and the European Space Agency (ESA) are making preparations for the imminent approach of asteroid 99942 Apophis, a near-Earth object.

Apophis, an asteroid considered highly dangerous to Earth, will approach within 32,000 kilometers (20,000 miles) of the Earth’s surface in 2029. This close encounter will allow scientists to closely examine the object. The asteroid will be visible from the Eastern Hemisphere without the need for a telescope or binoculars, and it will be closer than some of our man-made satellites.

blank

At the ESA-organized workshop Apophis T-5 Years: Knowledge Opportunity for the Science of Planetary Defense, scientists have been proposing potential missions to investigate the asteroid prior to the close approach.

NASA has already scheduled a visit to the asteroid, which is known as OSIRIS APEX. The objective is to reutilize the asteroid sampler previously referred to as OSIRIS-REx, deploying it to rendezvous with the asteroid soon after its close passage.

“According to NASA, the planned mission is expected to result in the alteration of the asteroid’s orbit, changes in its rotational speed and axis, and the potential occurrence of quakes or landslides that will modify its surface due to the gravitational pull of our planet,” NASA explains. The OSIRIS-APEX mission will enable terrestrial scientists to observe these alterations. In addition, the OSIRIS-APEX spacecraft will descend towards the surface of Apophis, an asteroid composed of silicate material (also known as rocky material) and a combination of metallic nickel and iron. It will then activate its engines to dislodge loose rocks and dust. This maneuver will provide scientists with a glimpse into the composition of the material located directly beneath the surface of the asteroid.

According to Space News, private companies presented alternative missions for the asteroid at the ESA meeting.

Blue Origin plans to utilize its Blue Ring spacecraft to transport a maximum of 13 payloads, weighing a combined total of 2 metric tons, to the asteroid. The launch is scheduled for 2027, with the spacecraft reaching the asteroid just before it comes closest to Earth. Meanwhile, NASA’s Jet Propulsion Laboratory presented the details of its DROID mission, which focuses on distributed radar observations of interior distributions.

JPL explains in a proposal that the architecture of DROID requires a specific launch of three spacecraft: a Mothership of ESPA Grande-class and two CubeSats. The Mothership transports the CubeSats to Apophis, follows a planned trajectory to meet up with them, captures detailed images using a specialized camera, and serves as a communication hub for the constellation by directly relaying data to Earth. After thoroughly characterizing Apophis’s physical attributes, such as its shape, spin, and gravity field, the Mothership releases two CubeSats. Each CubeSat is equipped with a wide-angle camera and low-frequency radar (operating at 60 MHz, using JuRa technology). These CubeSats then position themselves in synchronized low orbits to conduct radar observations using both monostatic and bistatic techniques.

Although the flyby of Apophis is expected to provide valuable insights into planetary defense against similar objects, there is no reason to be alarmed by its presence.

In 2021, Apophis conducted a close approach to Earth, during which astronomers conducted high-resolution radar observations to more accurately determine its orbital path. Prior to that, NASA held the belief that there was a possibility of a collision occurring later in the century. However, the observations conducted have definitively disproven this hypothesis.

“The possibility of a 2068 impact is no longer feasible,” stated Davide Farnocchia, an expert from NASA’s Center for Near-Earth Object Studies. “Our calculations indicate that there is no risk of impact for at least the next 100 years.”

Continue Reading

Astronomy

NASA has recently received a laser message transmitted from a massive distance of 226 million kilometers

blank

Published

on

blank

NASA’s Psyche mission is currently en route to investigate an unusual asteroid, and while in transit, the mission team has been conducting trials of a novel communication system. The novel methodology employs an infrared laser instead of radio waves, and it has recently demonstrated its efficacy from the farthest location to date. The message was sent when Psyche was located at a distance of 226 million kilometers (140 million miles) from Earth. That is equivalent to 1.5 astronomical units, which is the distance between the Earth and the Sun.

Psyche was transmitting its engineering data via radio waves using NASA’s Deep Space Network. For the first time, the mission team made the decision to transmit the data using the Deep Space Optical Communication system. The previous transmissions did not contain spacecraft data but rather test data.

During the April 8 test, it was demonstrated that data could be downloaded at a maximum rate of 25 Mbps, even from that distance. This already exceeds the anticipated target of “at least 1 Mbps” and is 10 to 100 times swifter than radio transmissions.

“During a pass on April 8, we received approximately 10 minutes of replicated spacecraft data through downlink,” stated Meera Srinivasan, the operations lead for the project at NASA’s Jet Propulsion Laboratory (JPL). Previously, we had been transmitting test and diagnostic data through our downlinks from Psyche. This marks a noteworthy achievement for the project as it demonstrates the integration of optical communications with a spacecraft’s radio frequency communications system.

blank

In previous tests, the spacecraft was positioned at a much shorter distance, specifically tens of millions of kilometers. Photographs and even a video featuring a cat were transmitted from the far reaches of outer space. The technology exhibits potential, yet there remain a few issues that require resolution. Clouds obstruct optical observations, preventing them from being conducted. This issue doesn’t affect radio communications.

“We have gained extensive knowledge about the system’s limits through our experiments during clear weather conditions. However, occasional storms have caused disruptions in operations at both Table Mountain and Palomar,” stated Ryan Rogalin, the receiver electronics lead of the project at JPL.

In June, the team will conduct another round of testing on the system when Psyche is located at a distance from the Sun that is 2.5 times greater than the distance between Earth and the Sun. This represents the utmost distance separating Mars and Earth. If the approach is successful, it could enable the establishment of a data-intensive network connecting Earth and Mars.

Continue Reading

Trending