Connect with us

Science

Basque peoples’ origins finally solved

blank

Published

on

blank

The Basque peoples from Northern Spain (The Basque Country) and Southern France have been an interesting population due to their unique language and genetic make-up. Anthropologists have always wanted to know where they came from and how did their language and customs survive for millennia.

An international team of geneticists may have solved this mystery. Until now, the Basques’ origins remained a mystery. For decades scientists thought that the Basque peoples were an isolated population of former hunter-gatherers that somehow survived the influx of farmers and herders coming from West Asia, almost 6,000 years ago.

The geneticists discovered that it isn’t quite so. Professor Mattias Jakobsson and his team, from the University of Uppsala, Sweden analyzed DNA recovered from eight skeletons from a cave in El Portalon, Atapuerca, Northern Spain. The skeletons belonged to a population of farmers that almost certainly wasn’t indigenous to that area. Their DNA is very similar to present day Basque peoples, though, suggesting they were their closest ancestors.

“Our results show that the Basque peoples trace their ancestry to early farming groups from Iberia, which contradicts previous views of them being a remnant population that trace their ancestry to Mesolithic hunter-gatherer groups. The difference between Basques and other Iberian groups is these latter ones show distinct features of admixture from the east and from North Africa,” says Prof. Mattias Jakobsson in his study.

These findings suggest that the existing theory about the Basque peoples is wrong and that their origin is a mixed one – between local hunter-gatherers and new arriving farmers from the Middle East. After the admixture the new population became relatively isolated for the last 5,000 years, thus they preserved their non-Indo-European language and customs.

This new theory is supported by the fact that this contact between local hunter-gatherers and moving farmers happened many times during the Neolithic age all over Europe. But the Basque peoples’ case is a little different because they chose to remain relatively separated from other geographically close populations.

Who doesn’t enjoy listening to a good story. Personally I love reading about the people who inspire me and what it took for them to achieve their success. As I am a bit of a self confessed tech geek I think there is no better way to discover these stories than by reading every day some articles or the newspaper . My bookcases are filled with good tech biographies, they remind me that anyone can be a success. So even if you come from an underprivileged part of society or you aren’t the smartest person in the room we all have a chance to reach the top. The same message shines in my beliefs. All it takes to succeed is a good idea, a little risk and a lot of hard work and any geek can become a success. VENI VIDI VICI .

Continue Reading

Medicine and Health

AstraZeneca took its COVID-19 vaccine off the market. Why did they do this? What You Need To Know

blank

Published

on

blank

The Oxford-AstraZeneca COVID-19 vaccine is poised to be globally discontinued, almost 3.5 years after its initial authorization. The vaccine’s discontinuation has attracted attention due to its notorious reputation. However, what is the underlying reason for this decision? It is not as sensational as some may imply.

As per a statement observed by the BBC, the decision was made for commercial reasons due to an excess of updated vaccines that has resulted in a decrease in demand.

Viruses have the ability to undergo mutations and evolutionary changes, and this holds true for SARS-CoV-2, the virus responsible for causing COVID-19. Consequently, a wide array of distinct variations has emerged, prompting certain vaccine manufacturers to develop revised vaccines specifically designed to combat these variations.

Nevertheless, AstraZeneca has not taken the same action. Professor Adam Finn from the University of Bristol stated to the Science Media Centre (SMC) that this implies that the vaccine, currently known as Vaxzevria, is likely significantly less efficacious than its initial effectiveness.

Therefore, it is highly unlikely that there is any economic justification for the ongoing production and distribution of the vaccine. This is likely the primary factor influencing the company’s decision to cease manufacturing and selling it.

The company has emphasized the effects of Vaxzevria since its implementation. The statement indicated that independent estimates showed that more than 6.5 million lives were preserved solely in the initial year of implementation. “Governments worldwide have acknowledged our endeavors and consider them to be a crucial element in bringing an end to the global pandemic.”

However, the vaccine did encounter some issues. In 2021, multiple countries halted the use of Vaxzevria as a precautionary measure due to reports of individuals experiencing a rare condition called thrombosis with thrombocytopenia syndrome (TTS) after receiving the vaccine.

The incidence of vaccine-induced TTS, however, has been determined to be significantly low. According to data from the UK, the likelihood of developing it after receiving the vaccination is estimated to be approximately 4 cases per 1 million individuals.

A comprehensive study of more than 29 million individuals revealed that contracting COVID-19 carries a significantly higher likelihood of developing blood clots compared to receiving the AstraZeneca vaccine.

“When considering our actions, we must always weigh the potential harm against the potential benefits. During the height of the pandemic, the AZ vaccine provided greater benefits than harm. However, now there are more effective and safer options available,” stated Professor Jonathan Ball, Deputy Director of the Liverpool School of Tropical Medicine, in an interview with the SMC.

“Maybe its relevance has diminished,” commented Dr. Michael Head, a global health researcher. The Oxford AstraZeneca vaccine has been instrumental in the global pandemic response for the majority of countries.

Continue Reading

Astronomy

This planet like Earth is the first one that has been proven to have an atmosphere

blank

Published

on

blank

Astronomers have successfully utilized the James Webb Space Telescope (JWST) to observe the presence of an atmosphere around a terrestrial exoplanet, marking the first such discovery beyond our solar system. Despite its inability to sustain life due to its likely magma ocean, this planet could provide valuable insights into the early geological development of Earth, as both planets share a rocky composition and a history of being molten.

Sara Seager, a planetary scientist at the Massachusetts Institute of Technology in Cambridge who was not part of the study, states that the discovery of a gaseous envelope surrounding an Earth-like planet is a significant achievement in the field of exoplanet research. The Earth’s tenuous atmosphere plays a vital role in supporting life, and the ability to detect atmospheres on comparable rocky planets is a significant milestone in the quest for extraterrestrial life.

JWST is currently studying the planet 55 Cancri e, which orbits a star similar to the Sun at a distance of 12.6 parsecs. It is classified as a super-Earth, meaning it is a terrestrial planet slightly larger than Earth. Specifically, it has a radius approximately twice that of Earth and a mass more than eight times greater. The paper published in Nature1 suggests that the atmosphere of the planet is likely to contain significant amounts of carbon dioxide or carbon monoxide. Additionally, the thickness of the atmosphere is estimated to be “up to a few percent” of the planet’s radius.

A mysterious world
55 Cancri e is also not a good place to live because it is very close to its star—about 1.6 times as close as Earth is to the Sun. Still, Aaron Bello-Arufe, an astrophysicist at the Jet Propulsion Laboratory (JPL) in Pasadena, California, and a co-author of the paper, says, “it’s perhaps the most studied rocky planet.” Its host star is bright at night, and the planet is big for a rocky one, so it’s easier to study than other places outside of the Solar System. “In astronomy, every telescope or other tool you can think of has pointed to this planet at some point,” says Bello-Arufe.

55 Cancribe was studied so much that when JWST was launched in December 2021, engineers pointed the infrared spectrometers of the spacecraft at it to test it. As these instruments soak up infrared wavelengths from starlight, they can find the chemical signatures of gases swirling around planets. Then Bello-Arufe and his coworkers chose to look into it more to find out for sure if the planet had an atmosphere.

Astronomers had changed their minds about 55 Cancri a huge number of times before the most recent observations. In 2004, the planet was found. Scientists first thought it might be the center of a gas giant like Jupiter. Researchers looked at 55 Cancri e as it passed in front of its star3 with the Spitzer Space Telescope in 2011. They found that it is a rocky super-Earth, much smaller and denser than a gas giant.

blank

After some time, scientists found that 55 C was cooler than it should have been for a planet that was so close to its star. This suggests that it probably has an atmosphere. One hypothesis was that the planet is a “water world” with supercritical water molecules all around it. Another was that it has a large, primordial atmosphere mostly made up of hydrogen and helium. But in the end, these ideas were shown to be wrong.

According to Renyu Hu, a planetary scientist at JPL and co-author of the new study, stellar winds would make it difficult for a planet this close to its star to retain volatile molecules in its atmosphere. He says there are still two options. The first was that the planet is completely dry and has a very thin layer of rock vapor in the air. The second reason was that it has a thick atmosphere made up of heavier, less volatile molecules that don’t easily escape.

A better picture
The most recent information shows that 55 Cancrie’s atmosphere has gases made of carbon, which points to option two. Seager says that the team did indeed find evidence of an atmosphere but that more observations are needed to fully understand its make-up, the amounts of gases present, and its exact thickness.

Laura Schaefer is a planetary geologist at California’s Stanford University. She wants to know how the atmosphere of 55 Cancrie affects things below the surface of the planet. The authors of the study say it’s still possible that stellar winds are carrying away parts of the atmosphere. However, rocks melting and releasing gases into the magma ocean could replace the gases.

Continue Reading

Science

Physicists make progress towards developing an extremely accurate ‘nuclear’ clock

blank

Published

on

blank

Scientists have made significant progress in developing a novel clock that relies on minute changes in energy within an atomic nucleus. Conceptually, a nuclear clock has the potential to surpass the precision of the world’s most accurate timekeeping devices, referred to as optical clocks, while also being less susceptible to disruptions.

Additionally, a nuclear chronometer could enable physicists to investigate the fundamental forces of nature using novel approaches. “We will have the capability to investigate situations involving dark matter and fundamental physics that are presently unattainable through alternative means,” states Elina Fuchs, a theoretical physicist at CERN, the particle-physics laboratory in Europe located near Geneva, Switzerland.

The highly anticipated discovery, achieved through a partnership between the Vienna University of Technology and Germany’s national metrology institute, the PTB, in Braunschweig, utilized an ultraviolet laser to induce a transition in the energy levels of a nucleus of the radioactive element thorium-229. The frequency of light that is absorbed and emitted by the nucleus serves as the mechanism for the clock’s ticking. The researchers disseminated their findings in the scientific journal Physical Review Letters on the 29th of April.

“This is significant,” states Adriana Pálffy-Buß, a theoretical physicist affiliated with the University of Würzburg in Germany. Using a laser to drive the transition is a crucial step that signifies the ability to construct a clock.”The achievement represents the combined efforts of numerous scientific organizations over a period of almost fifty years,” states Olga Kocharovskaya, a physicist affiliated with Texas A&M University in College Station.

Exactly on time
So well do optical clocks keep time that they only go off by one second every 30 billion years. To change an electron’s energy state around an atom like strontium, they need a certain frequency of visible light. This frequency controls how fast they tick.

But a nuclear clock would work better. To make the transition more energetic, the protons and neutrons in the nucleus would be raised to a higher energy level. This would use a slightly higher frequency of radiation, which would allow time to be cut even more precisely, making the clock more accurate. A clock like this would also be much more stable than an optical clock, since particles in the nucleus are not as affected by outside fields or temperature as electrons are.

But it has been hard to find a material with the right nucleus. Most nuclei have big energy changes that need a lot more than the push of a tabletop laser. Scientists found out in the 1970s that thorium-229 is different because its first energy state is very close to its ground state. In 2003, physicists suggested using thorium-229 as the building block of a super-stable clock. But they had to find the exact energy of the transition and the laser frequency that went with it, which could not have been predicted with any degree of accuracy using theory. The numbers have been narrowed down in a number of different ways since then.

To see the change, scientists put radioactive thorium atoms into calcium fluoride crystals that were only a few millimeters wide. They used a custom-built laser to scan the expected area and finally found the right frequency: about 2 petahertz (1015 oscillations per second). They were able to identify this frequency by observing the photons released by the nuclei as they returned to a lower-energy state. Thorsten Schumm, an atomic physicist at the Vienna University of Technology and co-author, remembers writing “found it” in big red letters in his lab book at a meeting the next day to talk about the signal that looked promising. He says, “It was very clear.”

The team was 800 times more accurate than the next best attempt when they found the frequency. According to co-author and PTB physicist Ekkehard Peik, since then, a team at the University of California, Los Angeles, has used the same frequency to achieve the same result. He calls it “a very nice confirmation.”

Help with basic physics
Scientists will have to greatly lower the laser’s resolution in order to make the system work as a real clock. This is so that it can reliably stimulate the nucleus at just the right frequency, according to Peik. “Building such a laser remains a big challenge,” says Kocharovskaya. “But there are little doubts that it will be possible in the near future.”

The group says that a thorium-based nuclear clock might be about 10 times more accurate than the best optical clocks if everything goes as planned. “This will be a better clock because it will be more resistant to changes in the outside world,” says Schumm. The clock might be smaller and easier to carry around if the nuclei are in a solid crystal instead of an optical system.

Help with basic physics
Scientists will have to greatly lower the laser’s resolution in order to make the system work as a real clock. This is so that it can reliably stimulate the nucleus at just the right frequency, according to Peik. “Building such a laser remains a big challenge,” says Kocharovskaya. “But there are little doubts that it will be possible in the near future.”

The group says that a thorium-based nuclear clock might be about 10 times more accurate than the best optical clocks if everything goes as planned. “This will be a better clock because it will be more resistant to changes in the outside world,” says Schumm. The clock might be smaller and easier to carry around if the nuclei are in a solid crystal instead of an optical system.

Very accurate optical clocks have made it possible for scientists to do things like measure differences in clock speeds to look into Earth’s gravitational field. Kocharovskaya says that these methods “could get a major boost.”

On a deeper level, physics could also use some help. Says Fuchs that a nuclear clock would be 10,000 times more aware of changes in fundamental constants, like the strength of the strong nuclear and electromagnetic forces. This means they could find possible types of dark matter, an invisible substance that physicists believe makes up 85% of the universe’s matter and is thought to cause tiny changes in the strength of these forces.

Fuchs says, “It’s possible that there’s very “light” dark matter that moves around, which could make these fundamental constants move.” She says that nuclear clocks might be able to pick up on that wiggle because these forces control the energy of their transition, and any change in their strength would change the tick in a way that can be measured. She also says that nuclear clocks could find out if the masses of some particles change over time. Fuchs and her colleagues are already working on their first paper, which is based on the measurement of frequency. She says, “This is pretty exciting for us.”

Continue Reading

Trending