Connect with us

Science

Scientists conducted research on our planet’s responses during the phenomenon of totality

blank

Published

on

blank

The snapping turtles all simultaneously entered the waters of Lake Tawakoni as soon as the moon covered the sun. The earth was adorned with twilight. The clouds swiftly traversed the sky. Jupiter was present next to the sun and was brightly radiating during the day. The majority of birds and insects had become quiet or completely silent.

Describing the experience of a total solar eclipse is challenging due to its profound effects on the surrounding light and abrupt drop in temperature, causing surprise shivering. However, on April 8th, I, along with many individuals throughout North America, had the opportunity to observe a remarkable astronomical phenomenon.

I traveled to Wills Point, located around one hour east of Dallas, to rendezvous with Darci Snowden, a space physicist from Central Washington University in Ellensburg, along with her undergraduate students. Local families gathered to watch as weather balloons were launched from a wooden pier to collect data, bringing joy to the onlookers.

Prior to the eclipse, the weather forecast in Texas indicated unfavorable conditions, including the possibility of thunderstorms and cloud cover obstructing the view of the heavens. After the situation settled, we experienced an extended period of clear skies while the moon passed in front of the sun, causing it to appear like a thin crescent. At the precise moment of totality, a substantial cloud passed past, resulting in audible expressions of disappointment from all present. Fortunately, the sun’s typically imperceptible atmosphere, known as the corona, became visible through gaps in the clouds. Fiery flares bursting from the sun’s surface were seen as tiny red spots at its edges.

Regardless of whether the weather was cloudy or clear, there were still scientific tasks to be completed. Occasions of total solar eclipses offer exceptional chances to examine the sun and its influence on Earth in unparalleled manners.

In Wills Point, the day before the April 8 eclipse, Snowden’s team initiated the launch of a sequence of 30 weather balloons, commencing at 2 p.m. CDT. The intention was to launch one object into the air every hour, consistently during the whole night, and to continue this pattern for six hours following the occurrence of the eclipse. These balloons, filled with helium, may ascend to a height of 33 kilometers (20 miles) in the stratosphere, which is the second-lowest layer of the atmosphere. They transported battery-operated instrument bundles known as radiosondes to gather data on temperature, humidity, pressure, and wind direction and speed.

Snowden and her students aim to obtain comprehensive data regarding the impact of an extraordinary occurrence, like a total solar eclipse, on Earth’s atmosphere. The researchers are investigating the phenomena occurring in the lowest part of the atmosphere, called the planetary boundary layer, which extends up to around two kilometers and covers the Earth’s surface. The topography of the terrain, which includes features like mountains, buildings, and woods, and solar radiation descending from the atmosphere, both have an impact on the dynamics of this layer.

Specifically, the team is seeking evidence of gravitational waves. It is important to distinguish gravitational waves from gravitational waves, which are disruptions in the spacetime continuum brought about by the collision of sizable celestial objects like black holes. Gravity waves, on the other hand, are a phenomenon that occurs closer to the Earth’s surface. These phenomena can occur when a mountain range or other external force lifts pockets of air, which then fall as a result of gravity. This process generates a regular oscillation that can transfer energy across the atmosphere. Additionally, sudden fluctuations in temperature might trigger their activation. When cool air gets more compact and descends, it occasionally descends to such a low point that it surpasses its balance and then rises again, creating a wave.

“It is akin to exerting pressure on an ice cube submerged in a glass of water,” Snowden remarks.

In the 2017 U.S. total solar eclipse, scientists conducted an experiment by flying balloons in Wyoming and New York, outside the path of totality. They discovered indications that the shadow of the moon, as it swiftly moved across the atmosphere, produced gravity waves near the surface that propagated outward, resembling the bow waves created by a moving ship. This phenomenon had been forecasted over half a century before but had never been conclusively observed. During the same event in 2017, scientists definitively saw eclipse-induced gravity waves at higher altitudes in the atmosphere for the first time (SN: 4/30/18).

In this instance, Snowden aims to verify the prior indications of their presence in the lower layers of the atmosphere. The objective of launching the balloons 24 hours before totality, which occurs when the moon totally obscures the sun, was to gather the first measurements prior to the eclipse. Subsequently, these measures might be juxtaposed with the ones obtained during and subsequent to the occurrence.

This data has the potential to contribute to more accurate forecasts for both short-term weather patterns and long-term climate trends. Although gravity waves are one of the smallest types of atmospheric waves that scientists investigate, they can have a substantial impact. They exert a significant impact on the dynamics of turbulence, facilitate the passage of heat, and facilitate the dispersion of airborne chemicals across the entire world. Numerous individuals traverse extensive distances, occasionally shattering akin to ocean waves at altitudes of 500 kilometers or more above the Earth’s surface.

Eli Pugsley, a senior physics major involved in leading the launches, describes the process of getting the team’s weather balloons up shortly before and during totality as “undoubtedly stressful.” “However, once we establish a consistent pattern, each individual fulfills their responsibilities, and the process proceeds effortlessly.”

The data collected from the students will be combined with data from approximately 40 other teams participating in NASA’s Nationwide Eclipse Ballooning Project. These teams will also be deploying weather balloons along the line of totality. Collectively, the data may ascertain whether the eclipse generated gravity waves in the lower atmosphere. However, it will take around one year to collect and analyze the information, according to Snowden.

Researchers and citizen scientists across the country were conducting various studies connected to the eclipse. Meanwhile, large numbers of eclipse watchers flocked to towns along the path of totality, hoping for an unobstructed glimpse of the celestial event.

blank

Physicist Fabiano Rodrigues and his team at the University of Texas, Dallas campus, focused their attention on the ionosphere, which begins at an altitude of around 80 to 90 kilometers above the Earth’s surface.

Solar radiation bombards the thin atmospheric gases in this layer, causing ionization, where the atoms split into electrons and nuclei. During the night, while not exposed to the intense sun radiation, these charged particles have an opportunity to come together again. Analogous transformations occur when there is an abrupt transition into darkness during a complete solar eclipse.

Rodrigues and his students strategically positioned inexpensive, readily available devices with the ability to receive satellite signals, such as GPS, in a large triangular formation. One device was placed at the university, another approximately 100 kilometers to the north, and the third approximately 50 kilometers east in the town of Terrell. These detectors monitor the instantaneous increase and decrease of electron concentration in the ionosphere, which serves as an indicator of its level of ionization.

The data obtained by Rodrigues and his team during the eclipse could potentially validate the forecasts on the extent to which the ionosphere will deionize due to the reduction of sunlight caused by the eclipse. It could also identify any shortcomings in these predictions. The collected data will be utilized to study the influence and deterioration of satellite transmissions caused by changes in the ionosphere. This research aims to enable engineers to mitigate these effects in future communication and navigation systems.

According to Rodrigues, the number of electrons in the ionosphere decreased, as anticipated during the event. However, it would probably take a few days for him to determine which models provided the most precise forecasts. Although there was some cloud cover in Dallas, he is very satisfied with the outcome.

Meanwhile, when the sun regained its usual intensity above Lake Tawakoni, Snowden and her colleagues paused to contemplate the extraordinary event they had just observed before resuming their balloon releases.

“It is an awe-inspiring encounter,” she states. “I consider myself very lucky to have witnessed it.”

 

As Editor here at GeekReply, I'm a big fan of all things Geeky. Most of my contributions to the site are technology related, but I'm also a big fan of video games. My genres of choice include RPGs, MMOs, Grand Strategy, and Simulation. If I'm not chasing after the latest gear on my MMO of choice, I'm here at GeekReply reporting on the latest in Geek culture.

Engineering

Testing the longest quantum network on existing fiber optics in Boston

blank

Published

on

blank

Imagine a world where information can be transmitted securely across the globe, free from the prying eyes of hackers. Its incredible power lies in the realm of quantum mechanics, making it a groundbreaking advancement with immense potential for the future of telecommunications. There have been obstacles to conquer, but there has also been notable progress, exemplified by a recent achievement from researchers at Harvard University.

Using the existing fiber optics within the city of Boston, the team successfully demonstrated the longest transmission between two nodes. The fiber path covered a total distance of 35 kilometers (22 miles), encircling the entire city. The two nodes that connected to the close path were situated on different floors, making the fiber route not the shortest but rather an intriguing one.

Quantum information has been successfully transmitted over longer distances, showcasing remarkable advancements in this experiment that bring us closer to the realization of a practical quantum internet. The real breakthrough lies in the nodes, going beyond the mere utilization of optical fibers.

A typical network utilizes signal repeaters made of optical fiber. These devices incorporate optical receivers, electrical amplifiers, and optical transmitters. The signal is received, transformed into an electrical form, and subsequently converted back into light before being transmitted. They play a crucial role in expanding the reach of the original signal. And in its present state, this is not suitable for quantum internet.

blank

The issue lies not in the technology, but rather in the fundamental principles of physics. Copying quantum information is not possible in that manner. Quantum information is highly secure due to its entangled state. The Harvard system operates by utilizing individual nodes that function as miniature quantum computers, responsible for storing, processing, and transferring information. This quantum network, consisting of only two nodes, is currently the most extensive one ever achieved, with nodes capable of such remarkable functionality.

“Demonstrating the ability to entangle quantum network nodes in a bustling urban environment is a significant milestone in enabling practical networking between quantum computers,” stated Professor Mikhail Lukin, the senior author.

At each node, a tiny quantum computer is constructed using a small piece of diamond that contains a flaw in its atomic arrangement known as a silicon vacancy center. At temperatures close to absolute zero, the silicon vacancy has the remarkable ability to capture, retain, and interconnect pieces of data, making it an ideal choice for a node.

“Given the existing entanglement between the light and the first node, it has the capability to transmit this entanglement to the second node,” elucidated Can Knaut, a graduate researcher in Lukin’s lab. “This phenomenon is known as photon-mediated entanglement.”

The study has been published in the prestigious journal Nature.

Continue Reading

Astronomy

NASA’s flyby of Europa shows that “something” is moving under the ice

blank

Published

on

blank

Europa’s surface has marks that show the icy crust is vulnerable to the water below. The most important thing is that Juno’s recent visit shows what might be plume activity. If this is real, it would let future missions take samples of the ocean inside the planet without having to land.

Even though it’s been almost two years since Juno got the closest to Europa, its data is still being looked at. Even though Juno has been going around Jupiter since 2016, the five pictures it took on September 29, 2022, were the closest views of Europa since Galileo’s last visit in 2000.

Some might say that’s a shocking lack of interest in one of the Solar System’s most interesting worlds, but it could also have been a good way to see how things had changed over time.

Europa is the smoothest object in the solar system because its ocean keeps it from sinking to the surface. Still, it’s not featureless; Juno saw some deep depressions with steep walls that are 20 to 50 kilometers (12 to 31 miles) wide, as well as fracture patterns that are thought to show “true polar wander.

In a statement, Dr. Candy Hansen of the Planetary Science Institute said, “True polar wander occurs if Europa’s icy shell is separated from its rocky interior. This puts a lot of stress on the shell, which causes it to break in predictable ways.”

The shell that sits on top of Europa’s ocean is thought to be rotating faster than the rest of the moon. This is what true polar wandering means. People think that the water below is moving and pulling the shell along with it. Ocean currents are thought to be causing this. The currents are most likely a result of heat inside Europa’s rocky core, which is heated up as a result of Jupiter and its larger moons pulling on Europa and turning it into a large stress ball.

The ocean and ice could stretch and compress parts of the ice, which is how the cracks and ridges that have been seen since Voyager 2 visited were made.

A group under the direction of Hansen is viewing images of Europa’s southern half. The scientist said, “This is the first time that these fracture patterns have been mapped in the southern hemisphere. This suggests that true polar wander has a bigger effect on Europa’s surface geology than was thought before.”

Ocean currents are not to blame for all of Europa’s map changes. It appears that optical tricks can even fool NASA. Hansen said, “Crater Gwern is no longer there.” “JunoCam data showed that Gwern, which was once thought to be a 13-mile-wide impact crater and one of Europa’s few known impact craters, was actually a group of ridges that crossed each other to make an oval shadow.”

But Juno gives more than it takes away. The team is interested in what they’re calling the Platypus because of its shape, not because it has a lot of parts that shouldn’t go together. Ridges on its edge look like they are collapsing into it. The scientists think this might be because pockets of salt water have partially broken through the icy shell.

blank

The Europa Clipper would find these pockets to be fascinating indirect targets for study, but the dark stains that cryovolcanic activity might have left behind are even more intriguing.

“These features suggest the possibility of current surface activity and the existence of liquid water beneath the surface on Europa,” stated Heidi Becker from the Jet Propulsion Laboratory. There is evidence of such activity in the geysers of Enceladus, but there is still uncertainty regarding whether it is currently happening on Europa.

Engaging in such an endeavor would enable the sampling of the interior ocean to detect signs of life simply by flying through a plume and gathering ice flakes without the need for landing or drilling.

It seems that in the past, there was a significant shift of over 70 degrees in the locations of features on Europa’s surface, although the reasons for this remain unknown. However, at present, polar wander only leads to minor adjustments.

Continue Reading

Bionics

A new syndrome linked to COVID that could be fatal has appeared

blank

Published

on

blank

There is a new outbreak of a rare but deadly autoimmune disorder in the north of England. New research suggests that the outbreak may be linked to COVID-19. Anti-MDA5-positive dermatomyositis is the name of the disease. It was mostly found in Asian people before the pandemic, but now it’s becoming more common among white people in Yorkshire.

Antibodies that target the MDA5 (melanoma differentiation-associated protein 5) enzyme are what cause the illness. It is linked to progressive interstitial lung disease, which scars lung tissue. Between 2020 and 2022, doctors in Yorkshire reported 60 cases of MDA5 autoimmunity, which was the highest number ever. Eight people died as a result.

What the researchers found when they looked at this sudden rise in cases is that it happened at the same time as the main waves of COVID-19 infections during the pandemic’s peak years. This caught their attention right away because MDA5 is an RNA receptor that is very important for finding the SARS-CoV-2 virus.

The study authors write, “This is to report a rise in the rate of anti-MDA5 positivity testing in our region (Yorkshire) in the second year of the COVID-19 pandemic. This was noteworthy because this entity is not commonly found in the UK.” They say this is likely a sign of “a distinct form of MDA5+ disease in the COVID-19 era.” They have named it “MDA5-autoimmunity and Interstitial Pneumonitis Contemporaneous with COVID-19” (MIP-C).

The researchers used tools that look for shared traits among people in the same medical cohort to figure out how this newly discovered symptom works. In this way, they found that people who had MDA5 autoimmunity also tended to have high levels of interleukin-15 (IL-15), a cytokine that causes inflammation.

The author of the study, Pradipta Ghosh, said in a statement that IL-15 “can push cells to the brink of exhaustion and create an immunologic phenotype that is very, very often seen as a hallmark of progressive interstitial lung disease, or fibrosis of the lung.”

Overall, only eight of the 60 patients had tested positive for COVID-19 before. This means that a lot of them may have had infections that didn’t cause any symptoms that they weren’t aware of. This means that even mild infections with no early symptoms might be enough to cause MDA5 autoimmunity.

The researchers say, “Given that the highest number of positive MDA5 tests happened after the highest number of COVID-19 cases in 2021 and at the same time as the highest number of vaccinations, these results suggest an immune reaction or autoimmunity against MDA5 after exposure to SARS-CoV-2 and/or vaccines.”

Ghosh says that the event probably isn’t just happening in Yorkshire. Reports on MIP-C are now coming in from all over the world.

The study was written up in the eBioMedicine journal.

Continue Reading

Trending