Connect with us

Space Exploration

Celebrating 5o years since the first spacewalk

blank

Published

on

spacewalk-anniversary-alexei-leonov

If anyone would ask you what day is today, you would probably say “Wednesday” or “March 18”. True, but you must also mention that 50 years ago, a 30 year old cosmonaut was the first man in human history who “spacewalked”. On March 18, 1965 the Soviet cosmonaut Alexei Leonov floated outside his little capsule, called the Voskhod 2, for no less than 12 minutes and 9 seconds. When asked how he felt floating so high above the ground, while outside the capsule, he said “like a seagull, with its wings outstretched, soaring high above the Earth”. As touching as this might sound now, the true story of the first spacewalk is a bit scary.

Leonov’s historical achievement was kept secret for some time, mostly because the mission itself was close to failure on several occasions. And by failure, I mean the death of both Leonov and his fellow cosmonaut, Pavel Belyayev. No one back home knew why Leonov “walked” outside the capsule, so watching him floating in space was a shock. He spoke about his little daughter, crying and demanding people to “tell daddy to go back inside” and asking “what is he doing?” countless times. Leonov’s father was also scared for his son’s safety, not understanding what’s happening and shouting “why is he acting like a juvenile delinquent? what is he doing clambering about outside?”.

Until the mission was declared complete and the president Leonid Brezhnev congratulated the cosmonauts, no one on the ground could see the real historical meaning of what looked like pure madness. Learning if man can survive in space, outside the capsule. “We are proud of you”, the president said, and so was the entire planet. History repeated itself three months later, when Ed White left the Gemini 4 capsule and floated through space on a similar “mission”. It would be rather inappropriate to say “happy birthday”, but we could at least say “Thank you!”

Samantha is very interested in all the latest technological advancements and she loves to show it through her articles. You'll likely find her writing about one gadget or another, but she certainly doesn't shy away from science stuff either.

Astronomy

What is the most terrifying communication that humanity could receive from outer space?

blank

Published

on

blank

If there are extraterrestrial civilizations within a reasonable distance capable of detecting our unintentional transmissions, there exists a possibility, albeit small, that among the initial signals they intercept, they could receive the commencement of the 1936 Olympic Games. Therefore, in the unlikely event that they do receive these signals, we might come across a speech by Adolf Hitler during our first encounter with an alien species.

“Naturally, this was not the initial transmission,” clarified Seth Shostak, a senior astronomer at SETI, during an interview with RealClearScience. “However, it was emitted at a sufficiently high frequency to penetrate the ionosphere.”

In the movie Contact, this ultimately became the initial communication that mankind received from an extraterrestrial society. The entities promptly returned the signal to Earth, unaware of the profound consequences that transmitting broadcasts of Adolf Hitler from outer space would have on the targeted species they were endeavoring to establish communication with. It is similar to greeting a random person and then unintentionally reciting a chapter from Mein Kampf.

Fortunately, it is highly likely that we won’t encounter this issue because extraterrestrial civilizations shouldn’t be able to distinguish the signal strengths.

“The power consumption would have been minimal, and the antenna used would not have had a specific direction,” Shostak elaborated. “The notion that extraterrestrial beings might intercept it is highly improbable.”

However, it is possible that we may receive significantly more alarming initial communications, as individuals have been deliberating on X (Twitter) and Reddit.

It appears that people are primarily focused on receiving warnings from extraterrestrial civilizations right now, possibly as a result of a recent unnamed television series.

What would be the scariest message humanity could receive from outer space?
byu/silly_vasily inAskReddit

According to certain proposed resolutions to the Fermi Paradox, which ask why we haven’t detected any signs of advanced extraterrestrial civilizations, the explanation is that these civilizations are intentionally concealing their presence due to the apprehension of their own annihilation.

Another concern is the possibility of receiving an unclear message that extraterrestrial beings will provide us with limited information, apart from the fact that they are en route.

What would be the scariest message humanity could receive from outer space?
byu/silly_vasily inAskReddit

One theory, called the Zoo Hypothesis, is related to this topic. The theory posits that extraterrestrial beings possess knowledge of our existence but deliberately confine us within a designated “zoo” to allow for our evolutionary and societal development. This parallels humanity’s practice of preserving certain areas as nature reserves and refraining from engaging with uncontacted tribes. Based on this hypothesis, it is possible that we may receive contact once we have reached a satisfactory level of technological and societal development and potentially be accepted into a community of other galaxies.

Although there is a prevailing apprehension that initiating communication with an extraterrestrial civilization will probably elicit fear due to humanity’s historical tendency to fear the unfamiliar, there is a potentially more alarming notion.

Continue Reading

Space Exploration

Bacteria on the ISS have changed into something that has never been seen before on Earth

blank

Published

on

blank

Movies and TV shows depict space stations as sterile and immaculate environments. However, wherever humans are present, they inevitably carry along with them a multitude of bacteria. Bacteria have colonized various habitats within the International Space Station (ISS), and due to their rapid evolutionary capacity, a particular species has been observed diverging from its terrestrial counterparts.

The bacteria in question are specific strains of Enterobacter bugandensis. This pathogen is classified as an opportunistic pathogen, which indicates that it can only cause disease in individuals who are already “perturbed” or experiencing a disruption in their health, such as those who are already battling another disease or have a weakened immune system. The bacteria is renowned for its multidrug resistance, rendering multiple antibiotic treatments ineffective in combating it. Therefore, it is crucial to comprehend the characteristics of this bacteria in space.

In 2018, researchers discovered five different variations of this bacterium on the International Space Station (ISS). Recent findings now indicate that there are a total of 13 distinct variations of this bacterium present on the space station. The first analysis showed some similarities, but the more in-depth genetic study suggests that the ISS strains may have gone through multiple mutations in response to the unique environmental stress, creating genetic and functional differences from E. bugandensis found on Earth.

The authors stated in the paper that they have identified specific genes that are only found in organisms associated with the ISS and not in their counterparts on Earth.

Gaining insight into the evolutionary processes of bacteria in space is crucial for safeguarding the well-being of astronauts and developing alternative strategies to combat these harmful microorganisms. With regards to these recently developed strains, their ability to adjust to microgravity could potentially conceal their vulnerabilities.

The authors further stated that these genes have the potential to be effective targets for therapeutic interventions against harmful microorganisms in the distinct environment of the IS.

The research team acknowledges certain constraints in the genetic analysis, preventing them from definitively attributing the characteristics of these strains solely to space. There is, however, a lot of strong evidence that these strains have become part of different bacterial communities, including those made up of opportunistic pathogens that are resistant to many drugs.

The coexistence of these organisms may have contributed to their ability to adapt and thrive in the challenging conditions of the ISS, characterized by low gravity, high radiation, and elevated levels of carbon dioxide.

The research is published in the scientific journal Microbiome.

Continue Reading

Space Exploration

The first-ever X-ray image of a solitary atom

blank

Published

on

blank

Recalling X-rays may bring back memories of fractures or routine dental examinations. However, this highly intense light has the ability to reveal more than just our skeletal structure. It is also employed to investigate the intricate realm of molecules, including real-time analysis of biochemical reactions. However, a significant challenge arises as scientists have yet to examine a solitary atom using X-rays. Up until this point,.

Scientists have successfully characterized a single atom using X-rays. They were able to distinguish the type of atoms they observed, as there were two different ones. Additionally, they successfully studied the chemical behavior exhibited by these atoms.

Scanning probe microscopes are able to capture images of atoms, but it’s impossible to determine their composition without the use of X-rays. With our advanced technology, we have the ability to precisely identify the specific type of an individual atom and analyze its chemical state simultaneously,” stated Professor Saw Wai Hla, a senior author from the University of Ohio and the Argonne National Laboratory.

Once we achieve that, we can track the materials all the way down to the smallest possible unit of just one atom. This will have a significant impact on the environmental and medical sciences and potentially lead to groundbreaking discoveries that could greatly benefit humanity. This discovery has the potential to revolutionize the world.

blank

Through careful analysis, the study successfully monitored the movement of an iron atom and a terbium atom, which belong to the group of rare-earth metals. Both of them were placed within their respective molecular hosts. An ordinary X-ray detector was enhanced with an additional, unique one. This particular one featured a specialized, sharp metal tip that needed to be positioned in close proximity to the sample in order to gather the X-ray-excited electrons. By analyzing the measurements obtained from the tip, the team was able to determine the composition of the substance, and that’s not the end of it.

“We have also been able to detect the chemical states of individual atoms,” Hla explained. When you look at the chemical states of an iron atom and a terbium atom in their molecular hosts, it is clear that the terbium atom stays alone and its chemical state does not change because it is a rare-earth metal. On the other hand, the iron atom exhibits strong interactions with its surrounding environment.

blank

The signal observed by the detector has been likened to fingerprints. Researchers can gain a comprehensive understanding of a sample’s composition and explore its physical and chemical properties. This has the potential to greatly enhance the performance and application of a wide range of materials, both commonly used and more obscure ones.

“The technique employed and the concept demonstrated in this study have made significant advancements in the field of X-ray science and nanoscale studies,” stated Tolulope Michael Ajayi, the first author of the paper and conducting this research as part of his PhD thesis. Furthermore, the utilization of X-rays for the detection and analysis of individual atoms has the potential to bring about significant advancements in research and pave the way for innovative technologies in fields like quantum information and the identification of trace elements in environmental and medical studies, among others. This accomplishment also paves the way for cutting-edge instrumentation in the field of materials science.

The study has been published in the prestigious journal Nature.

A previous iteration of this article was published in May 2023.

Continue Reading

Trending