Connect with us

Engineering

The newest flying taxi from Wisk Aero features four seats and is self-flying

blank

Published

on

blank

The four-passenger craft Wisk Aero is referred to as a “candidate for FAA certification.”

The sixth-generation semi-autonomous air taxi from Wisk Aero has been launched, and the company describes it as the “first-ever contender for type certification by the FAA of an autonomous eVTOL.” The style appears to be a greatly improved rendition of the “Cora” air taxi, which we first saw fly and hover in New Zealand back in 2018. However, neither the firm nor the certification process were detailed, nor were any flights shown.

Wisk claims that the four-seat plane can travel between 2,500 and 4,000 feet above the earth while cruising at speeds between 110 and 120 knots (138 MPH). It is a 12-propeller VTOL (vertical takeoff and landing) aircraft with tilting propulsion units in the front and fixed units for lift in the rear. According to a press release, it boasts a range of up to 90 miles, better handling, and more effective energy management than earlier models.

In the promotional movie (above), passengers are seen utilizing touchscreens to walk through a safety protocol demonstration while wearing seatbelts that resemble shoulder harnesses. Wisk asserts that there “fewer moving parts, no hydraulics, no oil and no fuel,” guaranteeing a flight that is safer. Additionally, it states that “designed to exceed today’s rigorous aviation safety standards of a one-in-a-billion chance of an accident.”

The business placed a strong emphasis on autonomous technology, claiming that they see it as the “key” to air mobility. In order to accomplish this, they plan to have better sensors to recognize and avoid impediments, as well as “multi-vehicle supervisors that offer human monitoring of every flight” and can take over in an emergency.

According to Wick, the new car is a contender for FAA certification, which would let it carry people within the US. Nevertheless, obtaining that coveted piece of paper is a difficult task even for renowned aircraft manufacturers like Boeing employing conventional aircraft designs — never mind a startup company with a completely unique form of aircraft that has never carried passengers.

The recent announcement of the closure of Larry Page’s aviation company Kittyhawk is a clear sign of the difficulties facing this industry. After Kittyhawk and Boeing collaborated on the fifth-generation Cora aircraft, Wick essentially grew out of that business.

Not just Wick is committed to seeing this air taxi project through. Earlier this year, Joby got FAA approval for its air taxi services, enabling it to conduct business. It still requires FAA clearance for its prototype aircraft before it can really transport people; this simply allows it to begin testing its services.

As part of the editorial team here at Geekreply, John spends a lot of his time making sure each article is up to snuff. That said, he also occasionally pens articles on the latest in Geek culture. From Gaming to Science, expect the latest news fast from John and team.

Continue Reading

Artificial Intelligence

Track People and Read Through Walls with Wi-Fi Signals

blank

Published

on

blank

Recent research has shown that your Wi-Fi router’s signals can be used as a sneaky surveillance system to track people and read text through walls.

Recently, Carnegie Mellon University computer scientists developed a deep neural network that digitally maps human bodies using Wi-Fi signals.

It works like radar. Many sensors detect Wi-Fi radio waves reflected around the room by a person walking. This data is processed by a machine learning algorithm to create an accurate image of moving human bodies.

“The results of the study reveal that our model can estimate the dense pose of multiple subjects, with comparable performance to image-based approaches, by utilizing WiFi signals as the only input,” the researchers wrote in a December 2022 pre-print paper.

The team claims this experimental technology is “privacy-preserving” compared to a camera, despite concerns about intrusion. The algorithm can only detect rough body positions, not facial features and appearance, so it could provide a new way to monitor people anonymously.

They write, “This technology may be scaled to monitor the well-being of elder people or just identify suspicious behaviors at home.”

Recent research at the University of California Santa Barbara showed another way Wi-Fi signals can be used to spy through walls. They used similar technology to detect Wi-Fi signals through a building wall and reveal 3D alphabet letters.

WiFi still imagery is difficult due to motionlessness. “We then took a completely different approach to this challenging problem by tracing the edges of the objects,” said UC Santa Barbara electrical and computer engineering professor Yasamin Mostofi.

 

Continue Reading

Engineering

The iPhone 15’s USB-C switch could simplify computing

blank

Published

on

blank

A special event tomorrow, Tuesday September 12, will reveal the iPhone 15, and rumors, supply chain sources, and European Union regulators have already given us a lot of information. Last source strongly suggests that the newest iPhone will have a USB-C connector instead of the Lightning connector from the iPhone 5 in 2012.

That’s not all we expect from a new iPhone, but it could be the biggest change due to what it could unlock. That’s especially true for the iPhone 15 Pro and Pro Max, which are expected to get a Thunderbolt port that uses the same connector as USB-C but adds data, display, power, and other input and output options.

The iPhone’s hardware input and output capabilities affect its role in users’ computing lives. Samsung and Motorola, for example, have spent multiple generations of their devices iterating on how smartphones can do more for users than they might be used to. Samsung’s DeX, while awkward at its introduction, has become a surprisingly competent desktop replacement. Android may get a native desktop mode for Pixel 8, if rumors are true.

Apple has yet to prove that iPadOS can replace desktop computing, but it has the potential to transform the iPhone in this regard. The concept of a pocketable thin client, where you take your PC with you and plug it into displays and input devices to work anywhere, has been around for a long time. No technical barriers exist to making an iPhone 15 with a full-featured USB-C port that supports the latest Thunderbolt spec.

When connected to an external display, iPhones are very limited. If implemented by a developer, you can output video at a resolution and aspect ratio that maximizes a TV or monitor while removing the rest of the interface.

An iPhone that projects iPadOS (or, ideally, macOS) when connected to a screen could replace a laptop for a large portion of the population, including casual computing and most of the knowledge workforce’s work tasks. The iPhone’s processors, which are used in Macs, are powerful enough for email, web browsing, video, and photo editing.

The foundations are there, and iPadOS does most of what’s needed on similar hardware. Apple could lose some of its Mac market if it did this, but it hasn’t shied away from cannibalizing its sales in other categories to lead a paradigm shift in how people use their devices.

We know Apple will announce a USB-C iPhone tomorrow, but we don’t know if it will be the same story, slightly repackaged, or a new opportunity for Apple to lead what we think of when we hear the word “smartphone.” I hope a desktop mode is being worked on for a future launch, but I don’t think it’s coming this year.

Continue Reading

Bionics

Redwire Space produces human knee cartilage in space for the first time

blank

Published

on

blank

Redwire Space has “bioprinted” a human knee meniscus on the International Space Station, which could treat Earthlings with meniscus issues.

The meniscus cartilage was manufactured on Redwire’s ISS BioFabrication Facility (BFF). The BFF printed the meniscus using living human cells and transmitted it to Redwire’s Advanced Space Experiment Processor for a 14-day enculturation process for BFF-Meniscus-2.

SpaceX’s Crew-6 mission returned the tissue to Earth after culturing. UAE astronaut Sultan Al-Neyadi and NASA astronauts Frank Rubio, Warren Hoburg, and Stephen Bowen investigated.

Redwire collaborated with the Uniformed Services University of the Health Sciences Center for Biotechnology, which studies warfighter remedies, for the trial. Meniscus injuries are the most prevalent orthopedic injuries in U.S. service members.

In recent months, Redwire Space has advanced biotechnology. The subsidiary of Redwire Corporation launched a 30,000-square-foot biotech and microgravity research park in Indiana this summer.

Redwire EVP John Vellinger called the printing “groundbreaking milestone.”

He stated, “Demonstrating the ability to print complex tissue such as this meniscus is a major leap forward toward the development of a repeatable microgravity manufacturing process for reliable bioprinting at scale.”

The company has long-term bioprinting and space microgravity research goals. Redwire will fly microgravity pharmaceutical drug development and cardiac tissue bioprinting payloads on a November SpaceX Commercial Resupply trip to the ISS.

Sierra Space agreed to integrate Redwire’s biotech and in-space manufacturing technology into its Large Integrated Flexible Environment (LIFE) space station module. Orbital Reef, a private space station designed by Blue Origin, Boeing, and others, will include LIFE.

Continue Reading

Trending