Engineering
Proxima Fusion secures $21 million in funding to further develop their ‘stellarator’ method for nuclear fusion
The interest of venture capitalists in fusion startups has fluctuated in recent years. As per the findings of the Fusion Industry Association, nuclear fusion companies received a significant investment of over $6 billion in 2023, surpassing the previous year by $1.4 billion. However, the growth rate of 27% was slower compared to the previous year as investors faced external concerns like inflation.
Nevertheless, figures alone fail to provide a comprehensive narrative. Interest in the field has continued to grow as startups explore innovative methods to harness the sun’s power for clean and abundant energy.
In 2022, a major breakthrough was achieved in the field when the Department of Energy’s National Ignition Facility successfully generated a fusion reaction that generated surplus power compared to the energy needed to initiate the reaction. And then, in August last year, the team confirmed that their initial test was not merely a stroke of luck. The path to achieving true fusion power is still a lengthy one, but the exciting part is that it has moved beyond the realm of theory.
A new player in the industry is Proxima Fusion, which has emerged as the first spin-out from the prestigious Max Planck Institute for Plasma Physics (IPP). Proxima, a Munich-based company, has successfully secured €20 million ($21.7 million) in a seed round. This funding will enable them to embark on the development of their initial line of fusion power plants.
The company utilizes “quasi-isodynamic (QI) stellarators” that incorporate high-temperature superconductors into their technology. A stellarator is a ring of magnets that are carefully arranged to create a doughnut shape. This design allows the plasma, which is the source of fusion energy, to be contained. On the other hand, stellarators pose a significant challenge in terms of construction due to their unconventional magnet positioning and the need for meticulous engineering.
In 2022, Proxima Fusion developed a solution to tackle these challenges by combining engineering solutions and advanced computing. The Max Planck IPP, known for developing the Wendelstein 7-X (W7-X) experiment, the largest stellarator in the world, has expanded on research as a spin-out.
According to Dr. Francesco Sciortino, co-founder and CEO of Proxima Fusion, advancements in fusion technology are now within reach thanks to the utilization of AI to model plasma behavior. This breakthrough brings us closer to achieving viable nuclear fusion, as explained during a call with.
Earlybird-backed German startup Marvel Fusion uses laser containment to start the reaction. When I inquired about Proxima’s preference for stellarators, Sciortino explained, “By employing lasers, we direct intense heat towards a small pellet.” That releases energy through fusion, but you’re compressing something and allowing it to explode. Our focus is on the current state of confinement. So it’s not a sudden burst, but rather a consistent and ongoing process of operation.”
Sciortino, who successfully completed his PhD at MIT on tokamak nuclear projects, mentioned that Proxima will build upon the knowledge gained from the W7-X device. The W7-X device has received significant public investment, totaling over €1 billion. He mentioned that the estimated timeframe for achieving fusion energy is in the mid-2030s. It appears that we are considering a timeframe of approximately 15 years. Our objective is to build an intermediate device in Munich, most likely by 2031. If we are able to achieve that, then the mid-2030s could be a viable option.
The startup’s investors are just as confident
Ian Hogarth, a partner at one of Proxima’s investors, Plural, shared his enthusiasm for Proxima’s work, highlighting two key aspects that he finds particularly compelling. First, their stellarator has greatly benefited from two significant trends in high-temperature superconductors and advancements in computer-aided simulation of complex, multi-physics systems. And secondly, North Germany is home to the world’s most advanced stellarator.
He believes that Proxima’s status as the first spin-out from a government project will provide it with a competitive advantage for success. According to him, this situation exemplifies the concept of the ‘entrepreneurial state,’ where a startup can leverage significant public investment to thrive.
However, Proxima is not the sole contender in the competition for fusion. Helion Energy secured a substantial $500 million in Series E funding two years ago, with the support of prominent tech entrepreneur and OpenAI CEO Sam Altman. Furthermore, there are a minimum of 43 additional companies actively working on the development of nuclear fusion technologies.
Redalpine led Proxima’s seed round, which also included Bayern Kapital, DeepTech & Climate Fonds, and the Max Planck Foundation. Plural and existing investors High-Tech Gründerfonds, Wilbe, UVC Partners, and the Tomorrow Fund of Visionaries Club were also part of the round.
Artificial Intelligence
Google DeepMind Shows Off A Robot That Plays Table Tennis At A Fun “Solidly Amateur” Level
Have you ever wanted to play table tennis but didn’t have anyone to play with? We have a big scientific discovery for you! Google DeepMind just showed off a robot that could give you a run for your money in a game. But don’t think you’d be beaten badly—the engineers say their robot plays at a “solidly amateur” level.
From scary faces to robo-snails that work together to Atlas, who is now retired and happy, it seems like we’re always just one step away from another amazing robotics achievement. But people can still do a lot of things that robots haven’t come close to.
In terms of speed and performance in physical tasks, engineers are still trying to make machines that can be like humans. With the creation of their table-tennis-playing robot, a team at DeepMind has taken a step toward that goal.
What the team says in their new preprint, which hasn’t been published yet in a peer-reviewed journal, is that competitive matches are often incredibly dynamic, with complicated movements, quick eye-hand coordination, and high-level strategies that change based on the opponent’s strengths and weaknesses. Pure strategy games like chess, which robots are already good at (though with… mixed results), don’t have these features. Games like table tennis do.
People who play games spend years practicing to get better. The DeepMind team wanted to make a robot that could really compete with a human opponent and make the game fun for both of them. They say that their robot is the first to reach these goals.
They came up with a library of “low-level skills” and a “high-level controller” that picks the best skill for each situation. As the team explained in their announcement of their new idea, the skill library has a number of different table tennis techniques, such as forehand and backhand serves. The controller uses descriptions of these skills along with information about how the game is going and its opponent’s skill level to choose the best skill that it can physically do.
The robot began with some information about people. It was then taught through simulations that helped it learn new skills through reinforcement learning. It continued to learn and change by playing against people. Watch the video below to see for yourself what happened.
“It’s really cool to see the robot play against players of all skill levels and styles.” Our goal was for the robot to be at an intermediate level when we started. “It really did that, all of our hard work paid off,” said Barney J. Reed, a professional table tennis coach who helped with the project. “I think the robot was even better than I thought it would be.”
The team held competitions where the robot competed against 29 people whose skills ranged from beginner to advanced+. The matches were played according to normal rules, with one important exception: the robot could not physically serve the ball.
The robot won every game it played against beginners, but it lost every game it played against advanced and advanced+ players. It won 55% of the time against opponents at an intermediate level, which led the team to believe it had reached an intermediate level of human skill.
The important thing is that all of the opponents, no matter how good they were, thought the matches were “fun” and “engaging.” They even had fun taking advantage of the robot’s flaws. The more skilled players thought that this kind of system could be better than a ball thrower as a way to train.
There probably won’t be a robot team in the Olympics any time soon, but it could be used as a training tool. Who knows what will happen in the future?
The preprint has been put on arXiv.
Engineering
New concrete that doesn’t need cement could cut carbon emissions in the construction industry
Even though concrete is a very common building material, it is not at all the most environmentally friendly choice. Because of this, scientists and engineers have been looking for alternatives that are better for the environment. They may have found one: concrete that doesn’t need cement.
Cement production, which is a crucial ingredient in concrete, ranks as the third most significant contributor to human-caused carbon emissions globally. Nevertheless, in recent years, a multitude of alternative techniques for producing more environmentally friendly concrete have surfaced. One proposed method involves utilizing industrial waste and steel slag as CO2-reducing additives in the concrete mixture. Another suggestion is to utilize spent coffee grounds to enhance the strength of the concrete while reducing the amount of sand required.
However, a certain company has devised a technique to produce cement-free concrete suitable for commercial enterprises.
The concrete has the potential to have a net reduction in carbon dioxide and has the ability to prevent approximately 1 metric ton of carbon emissions for every metric ton used. If this statement is accurate, the cement-free binder will serve as a noteworthy substitute for Portland cement. According to BGR, the new concrete also complies with all the industry standards of traditional cement concrete, ensuring that there is no compromise in terms of strength and durability.
While it is still in the early stages, the situation seems encouraging. C-Crete Technologies, a company specializing in materials science and holding the patents for a novel form of concrete, has utilized approximately 140 tons of this new cast-in-place (pourable) concrete in recent construction endeavors.
In September 2023, the company was granted an initial sum of almost $1 million, promptly succeeded by an additional $2 million, by the US Department of Energy to advance the progress of its technology. In addition, it has garnered numerous accolades that are facilitating its growth in operations.
The widespread adoption of cement-free concrete in future construction projects has the potential to significantly alter the environmental impact of the industry. Although C-Crete seems to be one of the few companies currently exploring these new alternatives on a large scale, it is likely that others will also start embracing them in the near future.
Engineering
To get gold back from electronic waste, the Royal Mint of the UK is using a new method
There are hidden mountains of gold in the junkyards, full of old smartphones, computers that don’t work anymore, and broken laptops. A new project in the UK wants to find and use these hidden riches.
The Royal Mint, which makes British coins for the government, has agreed to work with the Canadian clean tech startup Excir to use a “world-first technology” that can safely get gold and other precious metals out of electronic waste (e-waste) and recycle them.
Electronic devices have circuit boards that have small amounts of gold in their connections because gold is a good conductor. These boards also have useful metals like silver, copper, lead, nickel, and aluminum.
In the past, getting the metals was hard, but Excir’s new technology can quickly and safely recover 99 percent of the gold that is trapped in electronic waste.
They prepare the circuit boards using a “unique process,” and then they use a patented chemical formula to quickly and selectively remove the gold. The liquid that is high in gold is then processed to make pure gold that can be melted down and formed into bars. Palladium, silver, and copper could also be recovered with this method.
“Our entrepreneurial spirit has helped the Royal Mint do well for over 1,100 years, and the Excir technology helps us reach our goal of being a leader in sustainable precious metals.” The chemistry is completely new and can get precious metals back from electronics in seconds. “It has a lot of potential for The Royal Mint and the circular economy, as it helps to reuse our planet’s valuable resources and creates new jobs in the UK,” said Sean Millard, Chief Growth Officer at The Royal Mint.
At the moment, about 22% of electronic waste is collected, stored properly, and recycled. But with this kind of new technology, the problem of old electronics could be lessened.
Every year, the world makes about 62 million metric tons of electronic waste, which is more than 1.5 million 40-tonne trucks’ worth. That number will go up by another 32% by 2030 as more people buy electronics. This will make it the fastest-growing source of solid waste in the world.
The World Health Organization says that e-waste is hazardous waste because it contains harmful materials and can leak harmful chemicals if it is not handled properly. For example, old electronics can release lead and mercury into the environment, which can affect the development of the central nervous system while a person is pregnant, as a baby, as a child, or as a teen. Also, e-waste doesn’t break down naturally and builds up in nature.
Aside from being a huge waste, this is also a big problem for the environment. There could be between $57 billion and $62 billion worth of precious metals in dumps and scrap yards.
- Gadgets10 years ago
Why the Nexus 7 is still a good tablet in 2015
- Mobile Devices10 years ago
Samsung Galaxy Note 4 vs Galaxy Note 5: is there room for improvement?
- Editorials10 years ago
Samsung Galaxy Note 4 – How bad updates prevent people from enjoying their phones
- Mobile Devices9 years ago
Nexus 5 2015 and Android M born to be together
- Gaming10 years ago
New Teaser For Five Nights At Freddy’s 4
- Mobile Devices9 years ago
Google not releasing Android M to Nexus 7
- Gadgets10 years ago
Moto G Android 5.0.2 Lollipop still has a memory leak bug
- Mobile Devices9 years ago
Nexus 7 2015: Huawei and Google changing the game