Connect with us

Space Exploration

The CEO of True Anomaly discovers the positive aspect in the startup’s unusual first objective





The first flight of True Anomaly didn’t go at all as planned, but even Rogers, CEO of the space and defense startup, said he doesn’t see it as a failure. He gave new information about what went well and poorly and talked about how they’re making this strange event into a “success story.”

The company hasn’t said what caused the problems that stopped the mission yet, but a timeline of events shows how an in-space startup responds to a problem while the mission is still going on.

On March 4, the company sent up its first two satellites on SpaceX’s Transporter-10 sharing mission. The two spacecraft, which the company calls “Jackals,” are made to move close to other items and use optical and radar sensors to take high-resolution pictures and videos of them. The first flight, called Flight X, was supposed to show off these new skills in orbit for the very first time.

The rocket released the two spacecraft as planned, but the company started having problems that same day: mission controllers were supposed to be able to talk to each spacecraft within three hours of launch, but they didn’t see any signal from the first spacecraft, which was named Jackal 2, and their first contact with Jackal 1 was only partially successful.

They got a positive telemetry package from Jackal 1. The spacecraft’s arrays were getting voltage, and the data showed that it was pointing at the sun properly. But mission controllers couldn’t uplink data, and efforts to get in touch with both vehicles overnight also failed.

It was a hint of what was going to happen. Rogers, on the other hand, is sure that calling the mission a failure would be wrong.

According to him, Mission X’s plan is to get something up there as soon as possible that is complicated enough for us to learn from and then move on. He explained this to me. “This is how we think about it: we didn’t meet our goals, but we’re not seeing it as a failure for the flight test, just like when SpaceX blows up a rocket, everyone cheers.”

The only failure is not learning, not giving 100%, and not taking responsibility for the design as it is and the changes needed to enhance it.

Event timeline
The next day, True Anomaly engineers checked satellite tracking with rideshare passengers and space domain awareness suppliers.

Rideshare missions, where dozens of passenger spacecraft are launched quickly, make it impossible to identify which satellites belong to whom. Communications networks like high-latitude ground stations and ViaSat’s geostationary satellites get overloaded as providers rush their services.

An undisclosed non-Earth imagery provider sent the corporation photographs of Jackal 2 on March 7, confirming that it had deployed its solar panels and appropriately oriented itself. photographs of Jackal 1 followed the next day. Mission controllers added ground station integration on March 9 and confirmed both satellites’ orbits six days after launch. Jackal 2 remained silent, so they couldn’t reach Jackal 1.

Engineers added features to Mosaic, the in-house command and control program, and sent commands to the two Jackals during the expedition. On March 21, the corporation claimed it could not confirm Jackal’s functionality or status.

Rogers said root-cause analyses take time, especially when you have little data.

We know for sure that the spacecraft’s solar panels were deployed and facing toward the sun when we received the latest status update, he said. The setup sequence displayed some nominal behavior. We couldn’t communicate.”

He was confident that it was “probably upstream of communications” rather than a radio issue.

“Fly, Fix, fly.”
first mission of True Anomaly was closely watched. The startup has garnered attention since emerging from stealth a year ago with ambitious intentions to build intelligence-gathering chase satellites to strengthen national security and defend American assets from orbital threats. True Anomaly raised $100 million in Series B last year to expedite those objectives.

True Anomaly’s four co-founders titled the mission outcomes blog post “Fly, Fix, Fly,” referencing the company’s quick design cycles. Engineers are making several changes to Jackal and Mosaic before the second mission, some of which will happen regardless of Mission X.

One major difference is the satellite design: The future Jackals will be 100 pounds lighter, improving agility and payload. The corporation is also strengthening ground-test infrastructure and satellite power architecture. They’re also altering how the flight software weighs several “out-of-limit inputs” (signals of trouble).

True Anomaly plans to fly twice more in the next year, notwithstanding Mission X’s outcome.

The success story of Jackal Mission X is threefold, Rogers added. The first is partners and other Transporter-10 mission members helping each other. Second, our staff reacted and iterated quickly.”


As Editor here at GeekReply, I'm a big fan of all things Geeky. Most of my contributions to the site are technology related, but I'm also a big fan of video games. My genres of choice include RPGs, MMOs, Grand Strategy, and Simulation. If I'm not chasing after the latest gear on my MMO of choice, I'm here at GeekReply reporting on the latest in Geek culture.


NASA’s flyby of Europa shows that “something” is moving under the ice





Europa’s surface has marks that show the icy crust is vulnerable to the water below. The most important thing is that Juno’s recent visit shows what might be plume activity. If this is real, it would let future missions take samples of the ocean inside the planet without having to land.

Even though it’s been almost two years since Juno got the closest to Europa, its data is still being looked at. Even though Juno has been going around Jupiter since 2016, the five pictures it took on September 29, 2022, were the closest views of Europa since Galileo’s last visit in 2000.

Some might say that’s a shocking lack of interest in one of the Solar System’s most interesting worlds, but it could also have been a good way to see how things had changed over time.

Europa is the smoothest object in the solar system because its ocean keeps it from sinking to the surface. Still, it’s not featureless; Juno saw some deep depressions with steep walls that are 20 to 50 kilometers (12 to 31 miles) wide, as well as fracture patterns that are thought to show “true polar wander.

In a statement, Dr. Candy Hansen of the Planetary Science Institute said, “True polar wander occurs if Europa’s icy shell is separated from its rocky interior. This puts a lot of stress on the shell, which causes it to break in predictable ways.”

The shell that sits on top of Europa’s ocean is thought to be rotating faster than the rest of the moon. This is what true polar wandering means. People think that the water below is moving and pulling the shell along with it. Ocean currents are thought to be causing this. The currents are most likely a result of heat inside Europa’s rocky core, which is heated up as a result of Jupiter and its larger moons pulling on Europa and turning it into a large stress ball.

The ocean and ice could stretch and compress parts of the ice, which is how the cracks and ridges that have been seen since Voyager 2 visited were made.

A group under the direction of Hansen is viewing images of Europa’s southern half. The scientist said, “This is the first time that these fracture patterns have been mapped in the southern hemisphere. This suggests that true polar wander has a bigger effect on Europa’s surface geology than was thought before.”

Ocean currents are not to blame for all of Europa’s map changes. It appears that optical tricks can even fool NASA. Hansen said, “Crater Gwern is no longer there.” “JunoCam data showed that Gwern, which was once thought to be a 13-mile-wide impact crater and one of Europa’s few known impact craters, was actually a group of ridges that crossed each other to make an oval shadow.”

But Juno gives more than it takes away. The team is interested in what they’re calling the Platypus because of its shape, not because it has a lot of parts that shouldn’t go together. Ridges on its edge look like they are collapsing into it. The scientists think this might be because pockets of salt water have partially broken through the icy shell.


The Europa Clipper would find these pockets to be fascinating indirect targets for study, but the dark stains that cryovolcanic activity might have left behind are even more intriguing.

“These features suggest the possibility of current surface activity and the existence of liquid water beneath the surface on Europa,” stated Heidi Becker from the Jet Propulsion Laboratory. There is evidence of such activity in the geysers of Enceladus, but there is still uncertainty regarding whether it is currently happening on Europa.

Engaging in such an endeavor would enable the sampling of the interior ocean to detect signs of life simply by flying through a plume and gathering ice flakes without the need for landing or drilling.

It seems that in the past, there was a significant shift of over 70 degrees in the locations of features on Europa’s surface, although the reasons for this remain unknown. However, at present, polar wander only leads to minor adjustments.

Continue Reading


The Sun emitted the largest solar flare in the past 20 years, resulting in power outages





Solar Cycle 25 is decidedly more turbulent than its predecessor. The Sun is currently experiencing heightened activity, characterized by solar storms, coronal mass ejections, and geomagnetic storms of unprecedented intensity in recent years. Currently, the sun has emitted its most powerful solar flare to date during this particular cycle.

The flare was quantified as an X8.7, indicating a considerably higher strength compared to the flares emitted last week. The event emitted highly energetic light in the extreme ultraviolet range, which resulted in the ionization of the uppermost layer of the atmosphere. Consequently, a radio blackout occurred over the Americas, adversely impacting aircraft and vessels that depend on signals with frequencies below 30 MHz.

Ionization of the atmosphere causes an expansion, resulting in increased drag on satellites in low Earth orbit. They will require strategic maneuvering to be moved away from Earth. Solar flares have the potential to interfere with satellite communications.

A gif of the Sun yesterday with two bright flashes corresponding to the flares on its limb

Sunspot AR 3664 is where it comes from. Last week, several strong flares were seen coming from this area, including the second strongest of this cycle at the time. The Sun also sent out a number of coronal mass ejections (CMEs), which hit Earth and caused the beautiful auroral display we saw last weekend.

Back then, the sunspot was right on the side of the Sun that could be seen, and anyone could see it. It’s sixteen times wider than Earth! As the Sun turns, the spot is now on its side, so we can only see it from the side. We might have seen a bigger flare if it had happened last week.

“Another X-ray flare was made by Region 3664 as it moved past the western solar limb!!” It was an X8.7 flare this time, the biggest of this solar cycle! NASA’s Space Weather Prediction Center said in a post that any coronal mass ejection (CME) linked to this flare “likely WILL NOT have any geomagnetic effects on Earth due to its location.” “As always, please check our website for news!”

Today, as the CME moves past Earth, there may be a small rise in auroral activity. It’s too bad that nothing as exciting will happen as last Friday.

The solar cycle has a high point and a low point every 11 years. Around the peak, which could happen at any time, the most intense events tend to happen, but every once in a while, there are exceptions. There have been 10 times as many powerful flares this century.

Continue Reading


What are the consequences of flying over an earthquake?





Have you ever pondered the potential consequences of being aboard a commercial flight at a significant altitude when a colossal earthquake occurs? Presumably, you would be in an altered state of consciousness that would hinder your ability to perceive and comprehend any sensory experiences, correct? The answer to that question is contingent upon several factors.

Seismic activity and atmospheric conditions
Although it may appear improbable, an earthquake can potentially lead to several consequences that could pose challenges for a flight, depending on the circumstances. However, it is important to first examine the connection between the atmosphere and the earth before delving into that topic.

Attila Komjathy, a scientist at NASA’s Jet Propulsion Laboratory (JPL) of the California Institute of Technology, explained on NASA’s website that when the ground shakes, it generates small atmospheric waves that can travel all the way up to the ionosphere. This is a region known as the exosphere, which can reach a distance of up to 1,000 kilometers (600 miles) from the Earth’s surface.

Consequently, an earthquake has the potential to induce certain atmospheric disruptions, but is this sufficient to disrupt the operation of an aircraft? Simply put, the answer is no. However, if we delve deeper into the matter, the answer remains a resounding no, but with some intriguing nuances.

Earthquakes emit seismic waves, which manifest as pressure waves (P waves) and shear waves (S waves). S waves are restricted to propagating through solid media, such as the ground, while P waves have the ability to transmit through different types of media, including liquids and gases. Consequently, they have the ability to enter the atmosphere. When sound is transformed into soundwaves, they often have a frequency below 20 hertz, which is the minimum level for human hearing. Consequently, these soundwaves, known as infrasound, are usually inaudible.

Nevertheless, as these waves propagate through the air, their intensity diminishes. This phenomenon is known as attenuation, and it essentially refers to the decrease in sound intensity as the distance between the source and the listener increases. It is also a phenomenon that diminishes the intensity of sunlight as it passes through different layers of the atmosphere or other substances, such as the ocean.

Consequently, an aircraft traversing an earthquake, regardless of its intensity, would remain unaffected by the seismic vibrations beneath. Once the P waves have propagated through the rock and subsequently the air, their intensity will have significantly decreased, rendering them overshadowed by the plane’s own noise and movement.

Nevertheless, airplanes are not exempt from risks during an earthquake. The concerns at hand pertain to navigation and safety, albeit of a distinct nature.

In 2018, a self-proclaimed United States Air Force pilot and aero engineer named Ron Wagner provided a response on Quora to a question inquiring about the impact of earthquakes on an aircraft in flight. Wagner’s response was sufficiently captivating that Forbes subsequently shared it again.

Wagner claims that he piloted an aircraft during an earthquake, causing disruptions to air traffic control. During this occurrence, the earthquake resulted in a loss of electricity at the ground base, which consequently affected the plane’s navigation instruments and its capacity to communicate. The power outage resulted in the loss of radar signals for air traffic control, rendering them unable to determine the location of Wagner’s flight. Nevertheless, these problems were quickly resolved when the emergency power of the ground base was activated.

Although this may sound alarming, it serves as an illustration of potential occurrences. Typically, air traffic control stations possess ample emergency backup generators to handle such situations. In addition, they have meticulously developed contingency plans for system-wide events, which include strategies for addressing potential scenarios such as volcanic eruptions, nuclear fallout, floods, acts of terrorism, and earthquakes.

If you find yourself flying during an earthquake, you can rest assured that there is very little cause for concern. Typically, you will be unaware of the occurrence until you touch down.

All “explainer” articles undergo verification by fact-checkers to ensure their accuracy prior to publication. Information can be updated in the future by modifying, deleting, or adding text, images, and links.

Continue Reading