Connect with us

Engineering

Google Car surpasses 1 million public road miles as new CEO takes stand

blank

Published

on

google-car-miles-driven-google-car-ceo-self-driving-car-electric-car

Google Car has seen more development and more improvement in the past year than all the time spent researching combined beforehand and stands as testament to Google’s newfound affinity for autonomous self-driving cars. With the announcement of a new CEO, John Krafcik, taking one of the most important positions in the Google ecosystem this month, Google Car has reached a new milestone in its development and innovation.

Officially, Google Car now has more than 1 million miles driven autonomously on public roads in the United States, more than any other autonomous vehicle in development at the moment. Although major car companies are working on their own autonomous vehicles, Google Car has seen the most rapid development of all, thanks to the dedicated and powerful team in the project.

The appointment of John Krafcik, a veteran when it comes to horsepower, comes as a new push towards public availability and most likely aims to bump up the release date of the self-driving car by at least a few months. People have been looking forward to the Google Car after seeing the great progress the Mountain View giant has made and some of our readers have confessed that their next major purchase in life will be the Google Car, for which they’re saving up.

The Google Car price is uncertain, as we don’t know exactly how the final model of the self-driving vehicle will look like or what features it will boast with. We do know however that it is going to be an electric vehicle with a long autonomy, which means we are expecting an initial price of quite a few thousand dollars. Since Google is only in the prototype stage with its own Google Car, we do expect the final version release date to come around in about 4 years time.

Until the first Google Car, the first completely autonomous vehicle, comes around, Google’s joint ventures with other automotive companies will most likely bring to market more semi-autonomous smart cars. The addition of the skilled new CEO will only speed things up and industry voices think we might see the first self-driving Google Car earlier than expected, putting its release date sometime in 2018, well before the estimated date.

Google is building and engineering prototypes in Livonia, readying them for public roads of Cali, where it will be test-driving all of the models. Austin and Moutain View, California are the two main HQs for test-driving the Google Car, but the self-driving vehicle will soon be all around the states in test drives as the tech giant tries to improve voice guidance, GPS features, navigational controls, motion sensing and environmental perception of the vehicle.

Although we’re still a long way from a fully autonomous Google Car, the changes within Google’s Self-driving Car Project point towards an acceleration in development and towards the confidence that Google already has in its new product. It seems like the company has things on point and going according to plan, but until we find out more, we can only imagine how the world will be with self-driving cars improving travel, safety and comfort.

As part of the editorial team here at Geekreply, John spends a lot of his time making sure each article is up to snuff. That said, he also occasionally pens articles on the latest in Geek culture. From Gaming to Science, expect the latest news fast from John and team.

Artificial Intelligence

Google DeepMind Shows Off A Robot That Plays Table Tennis At A Fun “Solidly Amateur” Level

blank

Published

on

blank

Have you ever wanted to play table tennis but didn’t have anyone to play with? We have a big scientific discovery for you! Google DeepMind just showed off a robot that could give you a run for your money in a game. But don’t think you’d be beaten badly—the engineers say their robot plays at a “solidly amateur” level.

From scary faces to robo-snails that work together to Atlas, who is now retired and happy, it seems like we’re always just one step away from another amazing robotics achievement. But people can still do a lot of things that robots haven’t come close to.

In terms of speed and performance in physical tasks, engineers are still trying to make machines that can be like humans. With the creation of their table-tennis-playing robot, a team at DeepMind has taken a step toward that goal.

What the team says in their new preprint, which hasn’t been published yet in a peer-reviewed journal, is that competitive matches are often incredibly dynamic, with complicated movements, quick eye-hand coordination, and high-level strategies that change based on the opponent’s strengths and weaknesses. Pure strategy games like chess, which robots are already good at (though with… mixed results), don’t have these features. Games like table tennis do.

People who play games spend years practicing to get better. The DeepMind team wanted to make a robot that could really compete with a human opponent and make the game fun for both of them. They say that their robot is the first to reach these goals.

They came up with a library of “low-level skills” and a “high-level controller” that picks the best skill for each situation. As the team explained in their announcement of their new idea, the skill library has a number of different table tennis techniques, such as forehand and backhand serves. The controller uses descriptions of these skills along with information about how the game is going and its opponent’s skill level to choose the best skill that it can physically do.

The robot began with some information about people. It was then taught through simulations that helped it learn new skills through reinforcement learning. It continued to learn and change by playing against people. Watch the video below to see for yourself what happened.

“It’s really cool to see the robot play against players of all skill levels and styles.” Our goal was for the robot to be at an intermediate level when we started. “It really did that, all of our hard work paid off,” said Barney J. Reed, a professional table tennis coach who helped with the project. “I think the robot was even better than I thought it would be.”

The team held competitions where the robot competed against 29 people whose skills ranged from beginner to advanced+. The matches were played according to normal rules, with one important exception: the robot could not physically serve the ball.

The robot won every game it played against beginners, but it lost every game it played against advanced and advanced+ players. It won 55% of the time against opponents at an intermediate level, which led the team to believe it had reached an intermediate level of human skill.

The important thing is that all of the opponents, no matter how good they were, thought the matches were “fun” and “engaging.” They even had fun taking advantage of the robot’s flaws. The more skilled players thought that this kind of system could be better than a ball thrower as a way to train.

There probably won’t be a robot team in the Olympics any time soon, but it could be used as a training tool. Who knows what will happen in the future?

The preprint has been put on arXiv.

 

Continue Reading

Engineering

New concrete that doesn’t need cement could cut carbon emissions in the construction industry

blank

Published

on

blank

Even though concrete is a very common building material, it is not at all the most environmentally friendly choice. Because of this, scientists and engineers have been looking for alternatives that are better for the environment. They may have found one: concrete that doesn’t need cement.

Cement production, which is a crucial ingredient in concrete, ranks as the third most significant contributor to human-caused carbon emissions globally. Nevertheless, in recent years, a multitude of alternative techniques for producing more environmentally friendly concrete have surfaced. One proposed method involves utilizing industrial waste and steel slag as CO2-reducing additives in the concrete mixture. Another suggestion is to utilize spent coffee grounds to enhance the strength of the concrete while reducing the amount of sand required.

However, a certain company has devised a technique to produce cement-free concrete suitable for commercial enterprises.

The concrete has the potential to have a net reduction in carbon dioxide and has the ability to prevent approximately 1 metric ton of carbon emissions for every metric ton used. If this statement is accurate, the cement-free binder will serve as a noteworthy substitute for Portland cement. According to BGR, the new concrete also complies with all the industry standards of traditional cement concrete, ensuring that there is no compromise in terms of strength and durability.

While it is still in the early stages, the situation seems encouraging. C-Crete Technologies, a company specializing in materials science and holding the patents for a novel form of concrete, has utilized approximately 140 tons of this new cast-in-place (pourable) concrete in recent construction endeavors.

In September 2023, the company was granted an initial sum of almost $1 million, promptly succeeded by an additional $2 million, by the US Department of Energy to advance the progress of its technology. In addition, it has garnered numerous accolades that are facilitating its growth in operations.

The widespread adoption of cement-free concrete in future construction projects has the potential to significantly alter the environmental impact of the industry. Although C-Crete seems to be one of the few companies currently exploring these new alternatives on a large scale, it is likely that others will also start embracing them in the near future.

 

Continue Reading

Engineering

To get gold back from electronic waste, the Royal Mint of the UK is using a new method

blank

Published

on

blank

There are hidden mountains of gold in the junkyards, full of old smartphones, computers that don’t work anymore, and broken laptops. A new project in the UK wants to find and use these hidden riches.
The Royal Mint, which makes British coins for the government, has agreed to work with the Canadian clean tech startup Excir to use a “world-first technology” that can safely get gold and other precious metals out of electronic waste (e-waste) and recycle them.

Electronic devices have circuit boards that have small amounts of gold in their connections because gold is a good conductor. These boards also have useful metals like silver, copper, lead, nickel, and aluminum.

In the past, getting the metals was hard, but Excir’s new technology can quickly and safely recover 99 percent of the gold that is trapped in electronic waste.

They prepare the circuit boards using a “unique process,” and then they use a patented chemical formula to quickly and selectively remove the gold. The liquid that is high in gold is then processed to make pure gold that can be melted down and formed into bars. Palladium, silver, and copper could also be recovered with this method.

“Our entrepreneurial spirit has helped the Royal Mint do well for over 1,100 years, and the Excir technology helps us reach our goal of being a leader in sustainable precious metals.” The chemistry is completely new and can get precious metals back from electronics in seconds. “It has a lot of potential for The Royal Mint and the circular economy, as it helps to reuse our planet’s valuable resources and creates new jobs in the UK,” said Sean Millard, Chief Growth Officer at The Royal Mint.

At the moment, about 22% of electronic waste is collected, stored properly, and recycled. But with this kind of new technology, the problem of old electronics could be lessened.

Every year, the world makes about 62 million metric tons of electronic waste, which is more than 1.5 million 40-tonne trucks’ worth. That number will go up by another 32% by 2030 as more people buy electronics. This will make it the fastest-growing source of solid waste in the world.

The World Health Organization says that e-waste is hazardous waste because it contains harmful materials and can leak harmful chemicals if it is not handled properly. For example, old electronics can release lead and mercury into the environment, which can affect the development of the central nervous system while a person is pregnant, as a baby, as a child, or as a teen. Also, e-waste doesn’t break down naturally and builds up in nature.

Aside from being a huge waste, this is also a big problem for the environment. There could be between $57 billion and $62 billion worth of precious metals in dumps and scrap yards.

Continue Reading

Trending