Connect with us

Industry and Service

Google I/O developer conference is coming earlier this year

blank

Published

on

Google I/O 2015 scheduled for May

The annual Google I/O developer conference will take place a bit earlier this time around according to the Mountain View-based tech giant. The company says that this year the event will take place between May 28-29 at the Moscone West center in San Francisco, California. Registrations will open on March 17th and despite lasting for only two days, those interested should probably refrain from pushing and shoving around that time because of Google’s lottery system. Oh yes, merely wanting to attend Google I/O 2015 and having the money to buy a ticket isn’t enough because the company will not let everybody in.

As you might imagine, there are a plethora of people who wish to witness first hand all of Google’s latest innovations and the Moscone West center is not capable of housing everybody. This is where the lottery system comes in. Anybody can sign up to participate at Google I/O 2015 between March 17-19, but the company will choose at random the people who will “receive the opportunity to purchase one ticket”. In other words, not only would you have to fork out a pretty tidy sum in order to attend the conference, but you’ll also need to be very lucky to even have the chance of buying a ticket. The price tag has not been announced yet, but a ticket for Google I/O 2015 is likely to cost $900 or more, just like it did last year. That said, the cost is expected to be well worth it as Google usually gifts participants with all sorts of new and interesting gadgets.

At the moment, there’s not much else to talk about because the company is keeping most of the details under wraps, including those related to the full scheduled. In the meantime, the official Google I/O 2015 website is now up and running, so we’ll make sure to keep an eye on it and let you know as soon as new information surfaces.

Engineering

New concrete that doesn’t need cement could cut carbon emissions in the construction industry

blank

Published

on

blank

Even though concrete is a very common building material, it is not at all the most environmentally friendly choice. Because of this, scientists and engineers have been looking for alternatives that are better for the environment. They may have found one: concrete that doesn’t need cement.

Cement production, which is a crucial ingredient in concrete, ranks as the third most significant contributor to human-caused carbon emissions globally. Nevertheless, in recent years, a multitude of alternative techniques for producing more environmentally friendly concrete have surfaced. One proposed method involves utilizing industrial waste and steel slag as CO2-reducing additives in the concrete mixture. Another suggestion is to utilize spent coffee grounds to enhance the strength of the concrete while reducing the amount of sand required.

However, a certain company has devised a technique to produce cement-free concrete suitable for commercial enterprises.

The concrete has the potential to have a net reduction in carbon dioxide and has the ability to prevent approximately 1 metric ton of carbon emissions for every metric ton used. If this statement is accurate, the cement-free binder will serve as a noteworthy substitute for Portland cement. According to BGR, the new concrete also complies with all the industry standards of traditional cement concrete, ensuring that there is no compromise in terms of strength and durability.

While it is still in the early stages, the situation seems encouraging. C-Crete Technologies, a company specializing in materials science and holding the patents for a novel form of concrete, has utilized approximately 140 tons of this new cast-in-place (pourable) concrete in recent construction endeavors.

In September 2023, the company was granted an initial sum of almost $1 million, promptly succeeded by an additional $2 million, by the US Department of Energy to advance the progress of its technology. In addition, it has garnered numerous accolades that are facilitating its growth in operations.

The widespread adoption of cement-free concrete in future construction projects has the potential to significantly alter the environmental impact of the industry. Although C-Crete seems to be one of the few companies currently exploring these new alternatives on a large scale, it is likely that others will also start embracing them in the near future.

 

Continue Reading

Engineering

To get gold back from electronic waste, the Royal Mint of the UK is using a new method

blank

Published

on

blank

There are hidden mountains of gold in the junkyards, full of old smartphones, computers that don’t work anymore, and broken laptops. A new project in the UK wants to find and use these hidden riches.
The Royal Mint, which makes British coins for the government, has agreed to work with the Canadian clean tech startup Excir to use a “world-first technology” that can safely get gold and other precious metals out of electronic waste (e-waste) and recycle them.

Electronic devices have circuit boards that have small amounts of gold in their connections because gold is a good conductor. These boards also have useful metals like silver, copper, lead, nickel, and aluminum.

In the past, getting the metals was hard, but Excir’s new technology can quickly and safely recover 99 percent of the gold that is trapped in electronic waste.

They prepare the circuit boards using a “unique process,” and then they use a patented chemical formula to quickly and selectively remove the gold. The liquid that is high in gold is then processed to make pure gold that can be melted down and formed into bars. Palladium, silver, and copper could also be recovered with this method.

“Our entrepreneurial spirit has helped the Royal Mint do well for over 1,100 years, and the Excir technology helps us reach our goal of being a leader in sustainable precious metals.” The chemistry is completely new and can get precious metals back from electronics in seconds. “It has a lot of potential for The Royal Mint and the circular economy, as it helps to reuse our planet’s valuable resources and creates new jobs in the UK,” said Sean Millard, Chief Growth Officer at The Royal Mint.

At the moment, about 22% of electronic waste is collected, stored properly, and recycled. But with this kind of new technology, the problem of old electronics could be lessened.

Every year, the world makes about 62 million metric tons of electronic waste, which is more than 1.5 million 40-tonne trucks’ worth. That number will go up by another 32% by 2030 as more people buy electronics. This will make it the fastest-growing source of solid waste in the world.

The World Health Organization says that e-waste is hazardous waste because it contains harmful materials and can leak harmful chemicals if it is not handled properly. For example, old electronics can release lead and mercury into the environment, which can affect the development of the central nervous system while a person is pregnant, as a baby, as a child, or as a teen. Also, e-waste doesn’t break down naturally and builds up in nature.

Aside from being a huge waste, this is also a big problem for the environment. There could be between $57 billion and $62 billion worth of precious metals in dumps and scrap yards.

Continue Reading

Engineering

China’s $47 billion semiconductor fund prioritizes chip sovereignty as a key focus

blank

Published

on

blank

China has just shut down a third government-supported investment fund in order to strengthen its semiconductor industry and decrease dependence on other countries for the production and use of wafers. This move is aimed at emphasizing what is known as chip sovereignty.

The National Integrated Circuit Industry Investment Fund of China, commonly referred to as ‘the Big Fund,’ has had two previous iterations: Big Fund I (2014–2019) and Big Fund II (2019–2024). The latter was considerably more substantial than the earlier, but Big Fund III surpasses both with a total of 344 billion yuan, equivalent to around $47.5 billion, as disclosed in official filings.

The size of Big Fund III, which surpasses expectations, further demonstrates Huawei’s growing dependence on Chinese suppliers and reflects the country’s determination to attain self-reliance in semiconductor manufacture. It serves as a reminder that the ongoing competition in semiconductor technology between China and Western countries is reciprocal.

Both the United States and Europe share the desire to decrease their reliance on their long-standing technological competitors. China also has concerns regarding its supply, which extend beyond the potential impact on shipments from the U.S. and its allies.

Taiwan is the primary focus when it comes to chip manufacturing. If China were to take control of its production capabilities, it would greatly disadvantage the United States and its allies. Currently, Taiwan Semiconductor Manufacturing Co. (TSMC) produces approximately 90% of the world’s most advanced chips.

However, according to sources, Bloomberg has learned that ASML, a company located in the Netherlands, and TSMC have methods to render chip-making machinery inoperable in the case of a Chinese invasion of Taiwan.

China now manufactures over 60% of legacy chips, which are often used in automobiles and household appliances, according to a statement made by U.S. Commerce Secretary Gina Raimondo.

The competition between legacy and modern chips has expanded, yielding varying outcomes.

The Chinese official stance is that the policies of the United States is having a negative effect, resulting in a decline in exports from prominent American chip manufacturers. This viewpoint is shared by others as well.

According to Hebe Chen, a market analyst at IG, Nvidia is faced with the challenge of balancing its presence in the Chinese market while also managing the tensions between the United States and China. Due to U.S. sanctions, the company developed three customized chips specifically for the Chinese market. However, in order to remain competitive, the company had to cut the price of these chips, compromising its desired pricing strategy.

Nevertheless, it might be contended that the financial challenges faced by Western chip manufacturers may be justified if it hinders China’s rapid development and acquisition of more sophisticated semiconductors compared to its rivals.

Indications suggest that China may face significant consequences if limitations are imposed, such as the potential loss of access to Nvidia’s advanced chips for its AI companies or increased difficulties for its leading company, SMIC, in manufacturing its own chips.

The existence of Big Fund III indicates that China is experiencing significant pressure. As per reports, the cash will be allocated for both large-scale wafer fabrication, similar to past investments, as well as for the production of high-bandwidth memory chips. HBM chips, often referred to as high-bandwidth memory chips, are utilized in many applications such as artificial intelligence (AI), 5G technology, and the Internet of Things (IoT).

However, the most significant indicator is its size.

With the support of six prominent state-owned banks, Big Fund III has surpassed the $39 billion in direct incentives allocated by the U.S. government for chip manufacture under the CHIPS Act. Nevertheless, the total amount of federal assistance is $280 billion.

The EU Chips Act, valued at €43 billion, appears relatively modest compared to South Korea’s $19 billion support package. It is likely that the markets have taken note of this.

The announcement of Big Fund III triggered a surge in the stock prices of Chinese semiconductor businesses that are poised to gain from this fresh infusion of funding. Nevertheless, Bloomberg observed that Beijing’s previous investments have not consistently yielded positive results.

Specifically, China’s highest-ranking officials were dissatisfied with the prolonged inability to create semiconductors capable of replacing American circuitry. Furthermore, the media outlet highlighted that the previous leader of the Big Fund was dismissed and subjected to an investigation due to allegations of corruption.

Even in the absence of corruption, implementing significant modifications to semiconductor manufacturing is a time-consuming endeavor. In both Europe and the United States, the process takes a considerable amount of time. However, there are noteworthy and innovative advancements occurring.

Diamfab, a French deep-tech startup, is currently developing diamond semiconductors that have the potential to facilitate the green transition, specifically in the automobile sector. Although it is still a few years in the future, these Western ideas have the potential to be just as intriguing to monitor as the actions of established Chinese companies.

Continue Reading

Trending