Connect with us

In addition to Elon Musk’s earlier renewable energy breakthroughs with Tesla brand electric cars and the Powerwall, the next big step for Tesla is to turn roofs into solar energy collectors for sustainable power within the home. Appropriately titled “Solar Roof,” the technology aims to make home-based solar energy collection affordable, practical, and most importantly, attractive.

In 2016, Elon Musk announced a new technology in solar energy collection- Solar panels that blend functionally and aesthetically into the roofs of consumers. The technology is partly based around one of the traditional drawbacks of home solar collectors: They are simply unattractive. Traditional solar panels are bulky, and most often placed in the yard or sitting on top of the conventional roof structure of a home. Tesla’s Solar Roof technology places the solar panels themselves directly into the tiles found on roofs. The technology claims to disguise the actual solar collector cells by making them nearly invisible from the ground, and only seen clearly from above the home, which, conveniently, is where the Sun is located.


Tesla’s vision for Solar Roof.

Solar Roof currently has four different styles of solar panel roof tiles for customers to choose from: Tuscan Glass, Slate Glass, Textured Glass, and Smooth Glass, and it can be expected that more choices will be offered in the future. The technology is meant to be paired with other Tesla innovations, such as the Powerwall, to provide clean, renewable energy for the home (and, presumably, for electric cars).

The biggest downside to the new technology, as is the case with most contemporary renewable energy tech, is upfront cost: Estimates for a Solar Roof installation could cost in upwards of $60,000, according to Consumer Reports. However, as in the case with most renewable energy sources, the cost savings over the lifetime of the Solar Roof must also be taken into account. In the long term, renewable energy sources are indeed more cost effective, but come with higher upfront expenditures.

Business Insider has an excellent video that provides an overview of the Solar Roof.

Artificial Intelligence

Track People and Read Through Walls with Wi-Fi Signals





Recent research has shown that your Wi-Fi router’s signals can be used as a sneaky surveillance system to track people and read text through walls.

Recently, Carnegie Mellon University computer scientists developed a deep neural network that digitally maps human bodies using Wi-Fi signals.

It works like radar. Many sensors detect Wi-Fi radio waves reflected around the room by a person walking. This data is processed by a machine learning algorithm to create an accurate image of moving human bodies.

“The results of the study reveal that our model can estimate the dense pose of multiple subjects, with comparable performance to image-based approaches, by utilizing WiFi signals as the only input,” the researchers wrote in a December 2022 pre-print paper.

The team claims this experimental technology is “privacy-preserving” compared to a camera, despite concerns about intrusion. The algorithm can only detect rough body positions, not facial features and appearance, so it could provide a new way to monitor people anonymously.

They write, “This technology may be scaled to monitor the well-being of elder people or just identify suspicious behaviors at home.”

Recent research at the University of California Santa Barbara showed another way Wi-Fi signals can be used to spy through walls. They used similar technology to detect Wi-Fi signals through a building wall and reveal 3D alphabet letters.

WiFi still imagery is difficult due to motionlessness. “We then took a completely different approach to this challenging problem by tracing the edges of the objects,” said UC Santa Barbara electrical and computer engineering professor Yasamin Mostofi.


Continue Reading


The iPhone 15’s USB-C switch could simplify computing





A special event tomorrow, Tuesday September 12, will reveal the iPhone 15, and rumors, supply chain sources, and European Union regulators have already given us a lot of information. Last source strongly suggests that the newest iPhone will have a USB-C connector instead of the Lightning connector from the iPhone 5 in 2012.

That’s not all we expect from a new iPhone, but it could be the biggest change due to what it could unlock. That’s especially true for the iPhone 15 Pro and Pro Max, which are expected to get a Thunderbolt port that uses the same connector as USB-C but adds data, display, power, and other input and output options.

The iPhone’s hardware input and output capabilities affect its role in users’ computing lives. Samsung and Motorola, for example, have spent multiple generations of their devices iterating on how smartphones can do more for users than they might be used to. Samsung’s DeX, while awkward at its introduction, has become a surprisingly competent desktop replacement. Android may get a native desktop mode for Pixel 8, if rumors are true.

Apple has yet to prove that iPadOS can replace desktop computing, but it has the potential to transform the iPhone in this regard. The concept of a pocketable thin client, where you take your PC with you and plug it into displays and input devices to work anywhere, has been around for a long time. No technical barriers exist to making an iPhone 15 with a full-featured USB-C port that supports the latest Thunderbolt spec.

When connected to an external display, iPhones are very limited. If implemented by a developer, you can output video at a resolution and aspect ratio that maximizes a TV or monitor while removing the rest of the interface.

An iPhone that projects iPadOS (or, ideally, macOS) when connected to a screen could replace a laptop for a large portion of the population, including casual computing and most of the knowledge workforce’s work tasks. The iPhone’s processors, which are used in Macs, are powerful enough for email, web browsing, video, and photo editing.

The foundations are there, and iPadOS does most of what’s needed on similar hardware. Apple could lose some of its Mac market if it did this, but it hasn’t shied away from cannibalizing its sales in other categories to lead a paradigm shift in how people use their devices.

We know Apple will announce a USB-C iPhone tomorrow, but we don’t know if it will be the same story, slightly repackaged, or a new opportunity for Apple to lead what we think of when we hear the word “smartphone.” I hope a desktop mode is being worked on for a future launch, but I don’t think it’s coming this year.

Continue Reading


Redwire Space produces human knee cartilage in space for the first time





Redwire Space has “bioprinted” a human knee meniscus on the International Space Station, which could treat Earthlings with meniscus issues.

The meniscus cartilage was manufactured on Redwire’s ISS BioFabrication Facility (BFF). The BFF printed the meniscus using living human cells and transmitted it to Redwire’s Advanced Space Experiment Processor for a 14-day enculturation process for BFF-Meniscus-2.

SpaceX’s Crew-6 mission returned the tissue to Earth after culturing. UAE astronaut Sultan Al-Neyadi and NASA astronauts Frank Rubio, Warren Hoburg, and Stephen Bowen investigated.

Redwire collaborated with the Uniformed Services University of the Health Sciences Center for Biotechnology, which studies warfighter remedies, for the trial. Meniscus injuries are the most prevalent orthopedic injuries in U.S. service members.

In recent months, Redwire Space has advanced biotechnology. The subsidiary of Redwire Corporation launched a 30,000-square-foot biotech and microgravity research park in Indiana this summer.

Redwire EVP John Vellinger called the printing “groundbreaking milestone.”

He stated, “Demonstrating the ability to print complex tissue such as this meniscus is a major leap forward toward the development of a repeatable microgravity manufacturing process for reliable bioprinting at scale.”

The company has long-term bioprinting and space microgravity research goals. Redwire will fly microgravity pharmaceutical drug development and cardiac tissue bioprinting payloads on a November SpaceX Commercial Resupply trip to the ISS.

Sierra Space agreed to integrate Redwire’s biotech and in-space manufacturing technology into its Large Integrated Flexible Environment (LIFE) space station module. Orbital Reef, a private space station designed by Blue Origin, Boeing, and others, will include LIFE.

Continue Reading