Connect with us

Medicine and Health

A cutting-edge brain implant has been developed that can accurately translate imagined speech in real time, achieving the highest level of precision to date

blank

Published

on

blank

Caltech bioengineers’ new tool has proven to be exceptionally adept at deciphering brain signals related to internal speech. Although it has only been tested in two patients thus far, with further development, this technology has the potential to enable individuals who cannot speak to communicate solely through their thoughts.

BMIs are already achieving remarkable feats. These systems have been utilized to assist paralyzed patients in walking and, in the case of Neuralink’s first experimental subject, enable them to control a computer through a “telepathic” connection.

One of the primary applications of this technology involves facilitating communication. For people who are unable to speak, such as those with neurological conditions or brain injuries, BMIs can give them a voice.

There are some limitations to devices of this kind, like the one that the late Stephen Hawking famously used. One challenge is capturing the natural rhythm of speech, which scientists are actively researching, aided by Pink Floyd. Another limitation is that many speech BMIs rely on users attempting to vocalize words, which may not be feasible for everyone. An optimal solution would involve discovering a method to decipher internal speech, allowing individuals to simply imagine uttering a word. Progress in this field has been made, but it has been quite difficult, and the outcomes have been varied.

Now, the team at Caltech has created a system that can accurately decode internal speech with unprecedented precision.

Microelectrode arrays were surgically inserted into the brains of two male patients who were experiencing tetraplegia, one aged 33 and the other aged 39. The team focused on the primary somatosensory cortex and the supramarginal gyrus (SMG), a brain region that has not been investigated in previous studies on speech BMI.

The interface was trained on a combination of real and made-up words to determine their impact on the system’s effectiveness. The participants were presented with each word either visually or audibly and were subsequently instructed to mentally simulate saying the word for a duration of 1.5 seconds. They were then requested to vocalize the word.

According to first author Sarah Wandelt, this technology would be especially beneficial for individuals who have lost their ability to move. For example, let’s consider a condition such as locked-in syndrome.

Using the BMI, the researchers were able to analyze the real-time activity in the SMG while the participants were contemplating each word. One participant achieved an accuracy of 79 percent, which is comparable to the accuracy of decoding vocalized speech, according to Wandelt and co-author David Bjånes. The other participant, however, only achieved an accuracy of 23 percent.

The technology will require additional refinement and testing on a larger sample size with a broader range of words. However, the study does indicate that the SMG shows promise as a brain region to focus on.

“Although the second participant did not replicate these results, this study holds significance as it is, to my knowledge, the first successful implementation of a real-time speech brain-computer interface using single unit recordings in the SMG,” remarked Blaise Yvert of The Grenoble Institute of Neuroscience, who was not part of the study.

Additionally, the team is interested in exploring whether the BMI can effectively differentiate between different letters of the alphabet. Wandelt and Bjånes propose that decoding individual sound units of speech, known as phonemes, may offer a potential avenue for investigation.

According to Giacomo Ariani, the Associate Editor of the paper, this proof-of-concept study on high-performance decoding of internal speech will undoubtedly capture the attention of researchers who are dedicated to advancing the capabilities of BMIs and other therapeutic devices for individuals who have lost their ability to speak.

The study has been published in the prestigious journal Nature Human Behavior.

As Editor here at GeekReply, I'm a big fan of all things Geeky. Most of my contributions to the site are technology related, but I'm also a big fan of video games. My genres of choice include RPGs, MMOs, Grand Strategy, and Simulation. If I'm not chasing after the latest gear on my MMO of choice, I'm here at GeekReply reporting on the latest in Geek culture.

Medicine and Health

A recently identified strain of deadly fungus poses a significant risk to public health

blank

Published

on

blank

Researchers have recently discovered a new group of Candida auris, a potentially dangerous pathogen. The finding increases the total number of identified clades of the fungus, which is a newly emerging superbug resistant to multiple drugs, to six.

Candida auris is a strain of yeast that has the potential to cause serious illness and is frequently impervious to antifungal drugs. While individuals who are in good health generally do not fall ill, the transmission of the disease is highly prevalent within medical institutions and poses a significant risk to individuals with compromised immune systems. The yeast can induce a variety of conditions ranging from superficial infections of the skin to more severe and life-threatening illnesses, such as bloodstream infections. Due to its high level of resistance to multiple drugs, treating it can be challenging, and in some cases, even impossible.

The authors state that the pathogen is a significant global public health threat due to its widespread distribution, resistance to multiple drugs, high ability to spread, tendency to cause outbreaks, and high mortality rate. Although infections are still relatively uncommon, there has been a significant increase in cases in recent years.

Previously, the fungus had been categorized into five distinct clades, each located in different geographic regions: South Asia, East Asia, Africa, South America, and Iran.

In April 2023, doctors from the Singapore General Hospital identified a patient carrying a unique strain of C. auris as part of a routine screening program, adding it as the most recent clade to be discovered. Typically, these cases arise from individuals who have recently traveled, but this particular patient had not traveled outside the country for a period of two years, which raised some concerns.

Upon conducting a genetic analysis of the strain, the researchers determined that it did not align with any of the five known clades of the fungus. Therefore, it can be concluded that the strain belongs to a previously unidentified, sixth clade. Subsequently, they conducted tests on strains obtained from previous patients and identified two additional isolates of this particular group of C. auris in Singapore, as well as another isolate in Bangladesh.

The extent of the new clade’s prevalence and its potential to cause invasive infections and outbreaks remains uncertain at present. However, the researchers emphasize the importance of promptly identifying and controlling it in order to safeguard patient well-being.

“The ramifications of this breakthrough transcend the confines of the laboratory.” “Given the recent discovery of the sixth Candida auris clade, it is imperative to enhance surveillance capability or create new methods to strengthen existing surveillance strategies. This will enable health care facilities to closely monitor its emergence and effectively control its spread,” stated Dr. Karrie Ko, co-first author of the study.

Fortunately, the cases described in the study remained vulnerable to all antifungals that were tested. This should alleviate concerns about a pandemic similar to the one depicted in The Last Of Us. However, it is evident that the threat of C. auris is persistent. Therefore, additional efforts are required to identify new strains, monitor their spread, and control any negative clinical consequences.

The research is published in The Lancet Microbe journal.

Continue Reading

Medicine and Health

What makes your chest hurt when something makes you jump?

blank

Published

on

blank

Have you ever been scared so badly that you grabbed your chest? You feel like someone or something just zapped you behind the sternum. As you rest, you lean against the wall and think about why your friend is such a jerk and why you can feel it in your chest whenever you get scared.

People often use words like “heart-stopping” when they write fiction about fear, but the science of fear tells us that this isn’t what’s happening because it wouldn’t make sense. Our bodies are getting ready to deal with an impending threat when we’re scared, and going into cardiac arrest wouldn’t help us get very far if a lion was after us.

What do we do when we’re scared?
The sympathetic nervous system is what gets you excited when something makes you jump. It’s a tool inside our bodies that releases hormones and changes the way our bodies work to get us ready for the fight-or-flight response.

One important part is adrenaline, which is also known as epinephrine. The adrenal glands squeeze it out into the blood. The heart starts beating faster, sending more blood to your muscles and organs right away. Because they need all the oxygen they can get if they want to get away from a dangerous animal.

How do you feel when you go for a run?
Anyone who has ever used an EpiPen knows how bad it is to feel a sudden rush of adrenaline. It’s a stress hormone that makes you feel nervous and anxious, like you would before doing a bungee jump. Getting a rush when you think about a traumatic event from the past can be a sign of PTSD.

A medicine called adrenaline is used because it can help people who are having a medical emergency. If you have anaphylaxis from an allergen like peanuts, this can help because it can open your airway. Because it changes the strength and speed of heartbeats, it is also sometimes used to help people who are having a cardiac arrest.

When your adrenaline level goes up quickly, you may feel shaky, your heart beat quickly, and your chest get tight. When you add in the fact that you’re more alert, you become very aware of the changes in your body. This is especially clear when you’re not in danger, like when your partner surprised you at home when you thought you were alone.

When you’re scared, your sympathetic nervous system usually kicks in, which is normal. But, some heart conditions can get worse when you’re scared. Should anyone be having chest pain or ongoing discomfort, they should see a doctor. In the end, it is possible to be so scared that you die.

This article is not meant to be a replacement for medical advice, diagnosis, or treatment from a trained professional. If you have questions about a medical condition, you should always talk to a qualified health professional.

Continue Reading

Medicine and Health

The Lacks family is suing again over her “stolen” cells

blank

Published

on

blank

The family of Henrietta Lacks has filed a new lawsuit against two sizable drug companies for using her genetic material without her consent.
In the US District Court for the District of Maryland, Lacks’ living relatives are suing Novartis Pharmaceuticals Corporation, Novartis Gene Therapies, Inc., Viatris, Inc., and its subsidiary, Mylan Pharmaceuticals. They say the companies have used the “stolen” HeLa cell line to make hundreds of patents and have made a lot of money from it.

The suit wants the money made from using these cells to be “rightfully transferred” to Henrietta Lacks’s estate.

Novartis and Viatris chose to sell Henrietta Lacks’ living genetic material. Lacks was a black grandmother, community leader, and woman whose doctors took her tissue without her knowledge or permission, according to Chris Ayers, an attorney at Seeger Weiss LLP who is representing the Lacks family.
Ayers added, “We will keep looking for justice for Mrs. Lacks and her family.”

Henrietta Lacks died on October 4, 1951, from cervical cancer. She was 31 years old. Some of her cells are still alive today. A doctor at Johns Hopkins Hospital took a sample of her cervical cells without her knowledge just before she died. They were doing a cancer check. It was seen that her cells kept multiplying quickly, even after most of the cells in other samples would have died without their host.

Because scientists saw the potential, they found that these cells could be a cheap and easy way to help researchers do more research. The “HeLa immortal cell line” is what scientists call these cells, and they are very useful for biomedical research.

Over 75,000 scientific studies around the world have used these cells, which amount to about 55 million tons. They have been very important in making progress in areas like polio vaccines, cancer treatments, HIV/AIDS treatments, and much more.

All of this was done, though, without Lacks’ knowledge or permission. For many years, her family also didn’t know that the cells were being used for business.
Selling HeLa cells for money brings up important issues in medical ethics and genetics. As a black woman living in America in the 1950s, Lacks’ case shows how medical racism still affects minorities who aren’t getting enough help.

Even though a lot of people know about these problems, HeLa cells are still used in medical research for profit, which makes some companies a lot of money.
“Now that everyone knows Henrietta Lacks’ story, it’s shocking, but not surprising, that drug companies like Novartis and Viatris are still making money off of the deeply unethical origins of HeLa cells and the disturbing history of medical racism,” said Chris Seeger, another lawyer for the family.

A historic deal was made by Lacks’ family in 2023 after they sued Thermo Fisher Scientific, Inc., another biotech company, in the US District Court for the District of Baltimore. During that time, the lawyers said that the settlement was only the beginning and that there could be many more lawsuits about the use of HeLa cells.

Continue Reading

Trending