Connect with us

Astronomy

Volcanic rocks’ primordial water suggests life might be more common

blank

Published

on

volcanic-rocks-protosolar-nebula-solar-system-life-in-space-aliens-life-on-mars-water-primordial-water

Life on other planets is considered to be a certainty, and with new evidence of the infinitely intricate details of the universe and their influence on Earth come to light more often as ever, it is undoubtable. However, in a new study involving volcanic rocks and the types of isotopes they contain revealed that life could be more common in the universe than we might have expected.

Volcanic rocks examined by Lydia Hallis and her planetary scientist colleagues revealed that the Earth might have been “born with water”. In the theory they put forward in the latest issue of Science magazine, they argue that the isotopes discovered within volcanic rocks found in Iceland and Baffin Island suggest water had been part of Earth since it first started forming within the protosolar nebula.

Based on the light hydrogen isotope ratio discovered in the volcanic rocks we mentioned earlier, the primordial water within trapped within the rocks came from the protosolar nebula. The researchers demonstrated in their paper last week that the hydrogen isotope ratio in the volcanic rocks was much lighter than ocean water, making it much older. The discovery could hold against the theory that the water on our planet came from numerous water-contaminated asteroid collisions.

The breakthrough came after scientists evaporated volcanic rocks and examined the trapped water in their insides, revealing that Earth has not in fact gathered its water isotopes over the years due to debris from outer space impacting its surface, as previous theories believed. In fact, the primordial water from within the volcanic rocks of Iceland might be straight out of the Protosolar Nebula – or the gas and hydrogen molecular clouds that eventually became the Solar System.

The theory suggests that if the Solar System’s nebular history of formation is considered, then we should be able to find many different solar systems with planets like Earth orbiting around. These planets could have actually harbored the same primordial water at one point in time in the past few billion years, and if their geology was as fortunate as Earth’s, they might have evolved in the same way our own planet has. Water may signify the presence of biological life, thus the chances of finding planets similar to Earth might be slightly higher.  The theory cannot be considered definite proof, of course, but it does propose an interesting idea.

If planets within solar systems are formed from the same materials as the primordial protosolar nebula, and are capable of retaining water in a similar manner to Earth, the possibility of finding life closer to home is greatly increased. However, that doesn’t mean that we might be closer to intelligence. You might have heard theories about inferior forms of life being closer to us than we had ever thought – on Mars, for instance. In the future, we might discover primordial water on the Red Planet.

The volcanic rocks that the scientists base their theory on can now be considered as the first evidence of primordial water on Earth. If you want to get in on the science behind analyzing these unique volcanic rocks, you can read the full study in Science magazine. The discovery is significant and brings us one step closer to identifying the first planet, aside from Earth, harboring biological life.

As part of the editorial team here at Geekreply, John spends a lot of his time making sure each article is up to snuff. That said, he also occasionally pens articles on the latest in Geek culture. From Gaming to Science, expect the latest news fast from John and team.

Astronomy

A potential development of the first lunar railway is anticipated within the next ten years

blank

Published

on

blank

For people to live on the Moon’s surface permanently, they need to be able to use Moon resources. Not everything can be brought to Earth. But it’s not likely that the base will have everything it needs right there. Some things will need to be moved. It’s not a new idea to have cars (well, buggies) on the Moon, but now scientists are thinking about a very different idea: a railway system that floats.

FLOAT, which stands for “Flexible Levitation on a Track,” is the name of the project. The goal is to make payload transportation that is self-driving, dependable, and effective. As part of its mission, it will move payloads from spacecraft landing zones to the base and from mining sites to places where resources are taken out or where the soil is used for building.

Interesting about the technology is that the tracks are not fixed. Since they are unrolled right onto the lunar regolith, FLOAT doesn’t need much site preparation. Robots that can levitate will be able to move over the tracks. Since they don’t have wheels or legs, they don’t have to deal with the sharp regolith and its damaging power.

There is a layer of graphite on the flexible film track that lets diamagnetic levitation happen, and a flex circuit creates electromagnetic thrust. You don’t have to use the third layer, but if you do, it’s a solar panel that will power the system when it’s in the sun. The robots may be different sizes, but the team thinks that every day they can move 100 tons of stuff over several kilometers.

In phase II, six NASA Innovative Advanced Concepts (NIAC) have been moved forward. FLOAT is one of them. A new way to get astronauts to Mars quickly and an idea for a liquid space telescope are two others. For FLOAT, phase II will be all about designing and building a smaller version of the system that will be tested in a moon-like environment. This will also help us learn more about how the environment affects tracks and robots and what else is needed to make this idea a reality.

In a statement, John Nelson, NIAC program executive at NASA Headquarters in Washington, said, “These different, science fiction-like ideas make up a great group of Phase II studies.” “Our NIAC fellows always amaze and inspire us. This class makes NASA think about what’s possible in the future.”

These projects got $600,000 to keep looking into whether they were possible. As the leader of FLOAT, Ethan Schaler from NASA’s Jet Propulsion Laboratory is in charge. If the system keeps showing what it can do, it could be an important part of life on the Moon by the 2030s.

Phase I projects have also been announced. The ideas include new designs for telescopes, ways to make Mars less dangerous, and even a group of very small spacecraft that could reach our nearest stars in 20 years.

Continue Reading

Astronomy

The Eta Aquariids meteor shower is occurring this month, and its peak can be observed at a specific time

blank

Published

on

blank

Currently, Earth is undergoing one of its three most active meteor showers. The Eta Aquariids, remnants of Halley’s comet, are observed during the month of May. During this period, Earth approaches the comet’s orbit at a distance of approximately 9.7 million kilometers (6 million miles), which is close enough to collect residual dust particles.

The Eta Aquariids exhibit a frequency of up to one meteor per minute, although this level of activity is limited to individuals residing near the equator and in the southern tropics. For the rest of the population on Earth, it is anticipated that there will be a more moderate but still highly respectable rate of 10 to 30 meteors per hour. The optimal time in the Northern Hemisphere is during the pre-dawn period when the sky is at its maximum darkness, particularly in areas located away from urban centers. The midnight hours are also favorable in the Southern Hemisphere.

Allow approximately 30 minutes for your eyes to adapt; thus, it is important to take this into account. The duration of the meteor shower spans from April 19 to May 28 annually. The zenith of meteor activity is anticipated to occur during the nights of May 5th and 6th; however, there is a high probability of observing numerous meteors throughout the entire week.

Our orbit intersects with the orbit of Halley’s comet twice annually. In May, this event results in the occurrence of a meteor shower. In October, the remnants form the Orionid meteor shower. The Eta Aquariids derive their name from their origin at the star Eta Aquarii.

Halley’s comet exhibits significant luminosity and possesses a comparatively brief orbital period, completing one revolution around the sun every 76 years. For a period of more than 2,250 years, humans have been engaged in the act of observing it. The earliest documented sighting of this phenomenon occurred in 240 BCE and was recorded in the Book of Han by Chinese astronomers in 12 BCE. The year 1066 witnessed the depiction of this event in two significant historical records: the Bayeux Tapestry, which documented the Norman Conquest of England, and the petroglyphs created by the Chaco, indigenous Americans in present-day New Mexico.

The appearance of a comet in 1301 inspired Giotto di Bondone to depict the Star of Bethlehem as a comet, which had a lasting influence on its portrayal for the next seven centuries. Although observations had been made for thousands of years, it was not until 1705 that Edmond Halley discovered the periodicity of them.

The most recent observation of the object from Earth occurred in 1986, and it is expected to return to the inner solar system in 2061. Currently, it is returning to its original position after reaching its maximum distance from the sun in December.

Continue Reading

Astronomy

NASA and ESA are making preparations for the imminent close approach of the near Earth object Apophis

blank

Published

on

blank

NASA and the European Space Agency (ESA) are making preparations for the imminent approach of asteroid 99942 Apophis, a near-Earth object.

Apophis, an asteroid considered highly dangerous to Earth, will approach within 32,000 kilometers (20,000 miles) of the Earth’s surface in 2029. This close encounter will allow scientists to closely examine the object. The asteroid will be visible from the Eastern Hemisphere without the need for a telescope or binoculars, and it will be closer than some of our man-made satellites.

blank

At the ESA-organized workshop Apophis T-5 Years: Knowledge Opportunity for the Science of Planetary Defense, scientists have been proposing potential missions to investigate the asteroid prior to the close approach.

NASA has already scheduled a visit to the asteroid, which is known as OSIRIS APEX. The objective is to reutilize the asteroid sampler previously referred to as OSIRIS-REx, deploying it to rendezvous with the asteroid soon after its close passage.

“According to NASA, the planned mission is expected to result in the alteration of the asteroid’s orbit, changes in its rotational speed and axis, and the potential occurrence of quakes or landslides that will modify its surface due to the gravitational pull of our planet,” NASA explains. The OSIRIS-APEX mission will enable terrestrial scientists to observe these alterations. In addition, the OSIRIS-APEX spacecraft will descend towards the surface of Apophis, an asteroid composed of silicate material (also known as rocky material) and a combination of metallic nickel and iron. It will then activate its engines to dislodge loose rocks and dust. This maneuver will provide scientists with a glimpse into the composition of the material located directly beneath the surface of the asteroid.

According to Space News, private companies presented alternative missions for the asteroid at the ESA meeting.

Blue Origin plans to utilize its Blue Ring spacecraft to transport a maximum of 13 payloads, weighing a combined total of 2 metric tons, to the asteroid. The launch is scheduled for 2027, with the spacecraft reaching the asteroid just before it comes closest to Earth. Meanwhile, NASA’s Jet Propulsion Laboratory presented the details of its DROID mission, which focuses on distributed radar observations of interior distributions.

JPL explains in a proposal that the architecture of DROID requires a specific launch of three spacecraft: a Mothership of ESPA Grande-class and two CubeSats. The Mothership transports the CubeSats to Apophis, follows a planned trajectory to meet up with them, captures detailed images using a specialized camera, and serves as a communication hub for the constellation by directly relaying data to Earth. After thoroughly characterizing Apophis’s physical attributes, such as its shape, spin, and gravity field, the Mothership releases two CubeSats. Each CubeSat is equipped with a wide-angle camera and low-frequency radar (operating at 60 MHz, using JuRa technology). These CubeSats then position themselves in synchronized low orbits to conduct radar observations using both monostatic and bistatic techniques.

Although the flyby of Apophis is expected to provide valuable insights into planetary defense against similar objects, there is no reason to be alarmed by its presence.

In 2021, Apophis conducted a close approach to Earth, during which astronomers conducted high-resolution radar observations to more accurately determine its orbital path. Prior to that, NASA held the belief that there was a possibility of a collision occurring later in the century. However, the observations conducted have definitively disproven this hypothesis.

“The possibility of a 2068 impact is no longer feasible,” stated Davide Farnocchia, an expert from NASA’s Center for Near-Earth Object Studies. “Our calculations indicate that there is no risk of impact for at least the next 100 years.”

Continue Reading

Trending