Connect with us

Industry and Service

Former EQUIFAX Employee Accused of Insider Trading

blank

Published

on

Trading

Alright, there is some news that I wanted to get some conficmation of since I have made the last EQUIFAX news. Mostly due to the fact that there are so many articles popping up about them that it makes me think I’m being hoodwinked.

Regardless, this is a confirmed fact so I feel comfortable on explaining what’s going on for your viewing pleasure. As such, an EQUIFAX employee named Jun Ying is being sued for the charge of insider trading. In other words, there is even more dirt on this company than ever before.

Remember the reason why the DOJ was investigating EQUIFAX? Well, it seems like the employee that’s being indicted was the one that committed the stock trading before the cybersecurity incident happened.

“This defendant took advantage of his position as Equifax’s USIS Chief Information Officer and allegedly sold over $950,000 worth of stock to profit before the company announced a data breach that impacted over 145 million Americans,” said U.S. Attorney Byung J. “BJay” Pak . “Our office takes the abuse of trust inherent in insider trading very seriously and will prosecute those who seek to profit in this manner.”

Jun Ying was the Chief Information Officer of EQUIFAX U.S. Information Solutions in August 2017. Once the cybersecurity incident came to fruition, he allegedly texted a co-worker and settled a deal worth of $950,000 USD worth of stock shares.

Then, once the cybersecurity incident was announced during September 2017. The company’s stock plummeted and it seemed like this was it. However, we’ve noticed it and a lot of speculation about the insider trading arose.

Mr. Ying will be facing trial later this week before U.S. Magistrate Judge Linda T. Walker on the charges.  Although it is currently believed that he’s innocent of the charges, it will be the government’s burden to prove that he’s guilty beyond the shadow of a doubt.

I always wanted to be a journalist who listens. The Voice of the Unspoken and someone heavily involved in the gaming community. From playing as a leader of a competitive multi-branch team to organizing tournaments for the competitive scene to being involved in a lot of gaming communities. I want to keep moving forward as a journalist.

Engineering

Solar power surpassed coal in Texas for a whole month, marking the first time this has occurred

blank

Published

on

blank

There is a significant shift taking place in the way we generate electricity, even in the areas where it faces strong opposition. Texas is a prime example of the remarkable progress in renewable power, with continuous record-breaking achievements despite facing opposition from influential individuals.

In February 2021, a severe cold snap placed immense strain on the Texas electricity grid, resulting in extensive blackouts that tragically resulted in the loss of life and brought the region perilously close to catastrophe. As expected, certain individuals quickly pointed fingers at wind power as the cause of the issues, despite the fact that the majority of the capacity loss occurred in gas-fired power stations. They were, however, accompanied by a large number of influential Texas politicians, including the governor, which strongly suggested that they would favor continuously operating energy sources.

Instead, there has been a remarkable increase in the installation of photovoltaic panels since then. In March, solar power surpassed coal as the leading source of electricity in Texas, marking a significant milestone.

According to the Institute for Energy Economic and Financial Analysis (IEEFA), the Electric Reliability Council of Texas (ERCOT), the main power grid for most Texans, used a significant amount of solar-generated electricity in March. The total consumption reached 3.26 million megawatt hours (MWh). In comparison, 2.96 million MWh were generated from coal, making the difference approximately 10 percent.

In March, solar production experienced a significant increase of 56 percent compared to the previous year. This growth was three times higher than the March that occurred after the devastating freeze.

IEEFA highlights a series of significant achievements. In March, solar energy accounted for over 10 percent of ERCOT’s electricity generation, marking a significant milestone. At the same time, coal’s contribution fell below 10 percent for the first time.

Even in January, solar power played a crucial role in preventing a system meltdown during a cold snap by meeting nearly a quarter of the demand in the middle of the day.

The records will continue to be broken. By the end of the year, Texas is projected to add over 7 gigawatts (GW) of solar capacity to its grid, representing a nearly 30% increase from current levels. Despite potentially less favorable weather conditions, next March is expected to bring even more significant growth in solar energy. Exciting developments are in the works for additional enhancements in 2025. According to the Energy Information Administration, a government agency, solar power is projected to surpass coal as the primary source of electricity in Texas for the entire year.

The demand in Texas is not experiencing significant growth to accommodate the surplus production, especially when considering the slower growth of wind power. Consequently, there is a need to eliminate something from the market. Up until now, the primary source has been coal, not gas. In 2017, approximately 30% of the energy consumed in Texas came from coal. This year, it might exceed 10 percent for the year, even though it dipped below in March, but if it does, it won’t be by a significant margin.

Texans have been known for their tendency to go big in everything they do, including their use of coal. However, times are changing. Last year, it consumed twice as much coal for electricity compared to any other state. The decrease in coal usage in Texas has outpaced the national average, although other states are also making significant progress.

Critics of renewable energy often claim that solar power is ineffective when the sun is not shining. However, it is worth noting that Texas is currently at the forefront of battery installation in the United States. Actually, it’s going above and beyond. When it comes to solar, Texas and America as a whole lag significantly behind China in absolute terms and many countries on a per capita basis. However, when it comes to large-scale battery systems that can store surplus energy during the day and discharge it in the evening, Texas is at the forefront of global innovation.

In a recent report, it was stated that Texas currently has 5.2 GW of operational battery storage, with projections indicating that this number will increase to 10.9 GW by the end of the year. Solar power will ensure that the lights stay on long into the night.

Renewable energy has faced opposition for years from skeptics who doubted its viability, only to be proven wrong time and time again by its success in various locations.

One of the main factors driving the rapid growth of solar energy in Texas, despite the challenges posed by a government that is not particularly supportive of renewable power, is its significantly lower cost compared to other alternatives. If that’s true in Texas, the largest source of fossil gas in the United States, it’s likely that other places will soon follow suit with the energy revolution.

Continue Reading

Bionics

Highly efficient in energy usage and exceptionally precise – A novel frequency comb has been developed by researchers at Stanford University

blank

Published

on

blank

Researchers at Stanford University have introduced a novel frequency comb, a highly accurate measurement tool. This device exhibits distinctive characteristics such as its compact size, great energy efficiency, and remarkable accuracy. Through ongoing advancements, this revolutionary “microcomb,”  as outlined in a paper published in Nature, has the potential to serve as the foundation for widespread implementation of these devices in common electronic gadgets.

Frequency combs are laser devices designed to produce lines of light that are uniformly distributed, resembling the teeth of a comb or, more accurately, the tick marks on a ruler. Over the course of around 25 years, these “rulers for light” have brought about significant advancements in several fields of precise measurement, ranging from timekeeping to molecule detection through spectroscopy. However, due to the need for huge, expensive, and energy-intensive equipment, the usage of frequency combs has primarily been restricted to laboratory environments.

The researchers found a solution to these problems by combining two distinct methods for reducing the size of frequency combs onto a single, readily manufactured, microchip-style platform. The researchers anticipate a range of uses for their adaptable technology, including the development of sophisticated handheld medical diagnostic gadgets and the implementation of ubiquitous greenhouse gas monitoring sensors.

According to Hubert Stokowski, a postdoctoral scholar in the laboratory of Amir Safavi-Naeini and the primary author of the paper, the design of our frequency comb incorporates the most advantageous aspects of emerging microcomb technology within a single device. “Our new frequency microcomb has the potential to be scaled up for compact, low-power, and cost-effective devices that can be deployed in virtually any location.”

Safavi-Naeini, an associate professor in the Department of Applied Physics at Stanford’s School of Humanities and Sciences and senior author of the study, expressed great enthusiasm regarding the recently showcased microcomb technology. This technology has shown promise in developing innovative precision sensors that are compact and highly efficient, potentially suitable for integration into mobile devices in the future.

The process of manipulating light
An Integrated Frequency-Modulated Optical Parametric Oscillator, commonly referred to as FM-OPO, is a novel device.

The tool’s intricate nomenclature suggests that it integrates two methodologies for generating the spectrum of unique frequencies, or hues of light, that comprise a frequency comb. One approach, known as optical parametric oscillation, entails the reflection of laser light beams within a crystal medium, resulting in the formation of coherent and stable wave pulses. The second method uses laser light to enter a cavity, then modifies the phase of the light. This modulation is accomplished by applying radio-frequency signals to the device, resulting in the generation of frequency repetitions that function as light pulses.

The utilization of these two microcomb methods has been limited due to their inherent limitations. The aforementioned concerns encompass energy inefficiency, restricted capacity to modify optical parameters, and inferior comb “optical bandwidth” characterized by the gradual fading of comb-like lines as the distance from the comb’s center rises.

The researchers adopted a novel method to address the difficulty by focusing on a very promising optical circuit platform utilizing thin film lithium niobate as a material. The material possesses favorable characteristics in comparison to silicon, which is the prevailing material in the industry. Two advantageous characteristics of this material are its “nonlinearity,” which enables the interaction of light beams of different hues to produce new colors or wavelengths, and its ability to transmit a wide variety of light wavelengths.

The components of the new frequency comb were fabricated by the researchers through the utilization of integrated lithium niobate photonics. These technologies for controlling light are based on advancements made in the well-established field of silicon photonics, which focuses on the production of optical and electronic integrated circuits on silicon microchips. Both lithium niobate and silicon photonics have built upon the semiconductors used in traditional computer processors, which originated in the 1950s.

According to Safavi-Naeini, lithium niobate possesses distinct characteristics that are not present in silicon, rendering it indispensable for the fabrication of our microcomb device.

Remarkably exceptional performance
Subsequently, the researchers integrated components from optical parametric amplification and phase modulation methodologies. The researchers held specific performance expectations about the new frequency comb system on lithium niobate chips; nonetheless, the observed outcomes beyond their initial expectations.

In general, the comb generated a consistent output instead of brief pulses, allowing the researchers to decrease the necessary input power by roughly ten times. The device also produced a comb that was comfortably flat, indicating that the comb lines located further away from the center of the spectrum did not diminish in intensity. This characteristic enhances the accuracy and applicability of the device in many measurement applications.

Safavi-Naeini expressed astonishment at the comb’s unexpected nature. “Despite our initial intuition that we would observe comb-like behaviors, our intention was not to create a comb of this exact nature. It took us several months to create the simulations and theory that elucidated its primary characteristics.”

In order to get additional understanding of their surpassing device, the researchers sought the expertise of Martin Fejer, who holds the esteemed positions of J. G. Jackson and C. J. Wood Professor of Physics, as well as a professor of applied physics at Stanford University. Fejer, in collaboration with his colleagues at Stanford University, has made significant contributions to the advancement of contemporary thin film lithium niobate photonics technologies and the comprehension of the crystal characteristics of this material.

Fejer (year) established a significant correlation between the fundamental physical principles that underlie the microcomb and the concepts explored in scientific literature during the 1970s. This connection is particularly relevant to the ideas put forth by Stephen Harris, a retired professor of applied physics and electrical engineering at Stanford University.

With additional refinement, the novel microcombs may be easily produced at traditional microchip foundries and have numerous practical uses, including sensing, spectroscopy, medical diagnostics, fiber-optic communications, and wearable health-monitoring systems.

“Our microchip has the capability to be integrated into any device, and the overall size of the device is contingent upon the size of the battery,” stated Stokowski. “The technology we have showcased has the capability to be integrated into a compact personal device, comparable in size to a phone or even smaller, and can be utilized for various practical functions.”

Continue Reading

Engineering

Ukrainian officials view ground robots as a significant development in warfare

blank

Published

on

blank

Milan — The Ukrainian government is currently witnessing a rise in the number of applications submitted by robotics manufacturers seeking to assess the effectiveness of their combat systems. This trend indicates the growing significance of unmanned ground capabilities, particularly in light of the current deadlock on the front lines with Russia.

Brave1, a government defense-technology hub responsible for the development of field-ready capabilities, has recently announced the submission of over 50 ground robotic systems and more than 140 unmanned ground vehicles for evaluation.

In order to improve the Ukrainian army’s capabilities on the battlefield, Brave1 announced on March 12 that it would acquire a sizable number of unmanned ground vehicles (UGVs) through United24. These UGVs are expected to have a transformative impact on the ongoing conflict, similar to the existing role of drones. The Ukrainian government runs a website called United24 that seeks to raise money for the country’s ongoing internal conflicts.

Over the past year, there has been a notable rise in the proliferation of such platforms in military operations, with their utilization and evaluation expanding to encompass a broader range of objectives. Ukrainian social media platforms have lately disseminated video content purportedly showcasing an unmanned ground vehicle (UGV) with the capacity to deploy six anti-tank mines simultaneously.

The online images shared by Brave1 depict a diverse array of compact tracked and wheeled ground robots in motion, armed with firearms, engaged in the evacuation of injured dummies, and seemingly outfitted with technology designed for mine detection.

A prevailing pattern observed in Ukrainian unmanned robots is their tendency to be somewhat light and less weighty compared to their numerous counterparts available on the global market.

According to Nataliia Kushnerska, the project lead at Brave1, Ukraine gains a strategic advantage on the battlefield by employing advanced technological solutions that outperform their adversaries in terms of efficiency, innovation, and cost. These hardware and software products serve as asymmetric responses, capable of altering the configuration during confrontations against the formidable resources of the enemy. This information was conveyed in an email statement to Defense News.

“Ukraine has emerged as a prominent international center for defense technology, and the expansion of this industry will have a crucial impact on Ukrainian defense strategy for many years to come,” she stated.

A considerable quantity of weapons and explosives employed by Russian and Ukrainian military forces persist without detonation, presenting a potential hazard to both military personnel and non-combatants. As of April 2023, it is anticipated that almost 174,000 square kilometers of Ukraine were polluted with landmines.

The impetus to expedite the advancement of Unmanned Ground Vehicles (UGVs) stems from the want to deploy robots for the perilous task of extracting live munitions that remain on the battlefield.

 

Continue Reading

Trending