Connect with us

Engineering

A new robotic surgeon may outperform humans in the removal of cancerous tumors

blank

Published

on

blank

Scientists have developed a novel robotic surgical system to remove cancerous tumors from extremely sensitive areas that can be challenging and dangerous for even the most experienced human surgeons.

During the procedure of resection to remove cancerous tumors, the goal is to eliminate the diseased cells while conserving as much healthy tissue as possible to avoid their recurrence or spread. Performing this operation is difficult under normal circumstances, and significantly more so when it involves sensitive locations like the neck, head, or other delicate regions.

Even the most skilled surgeons may find it challenging to function well when faced with weariness, burnout, and visual obstruction.

This issue may soon be resolved. If the new ASTR (Autonomous System for Tumor Resection) is involved,. A team of researchers from Johns Hopkins University developed ASTR to perform surgical removals in delicate areas, such as the tongue. The robot surgeon, according to its developers, can remove malignancies with accuracy that matches or even surpasses that of human surgeons.

Axel Krieger, assistant professor of mechanical engineering at the Whiting School of Engineering, stated that doing a resection with accurate margins is a highly challenging operation.

Many aspects of these operations involve hope and perhaps some speculation. Many surgeons find it challenging. We aimed to enhance the precision of these methods.

In this case, precision refers to the customary 5 millimeters (0.2 inches) of healthy tissue that surgeons aim to remove while operating on malignant tissue. This 5-millimeter tissue layer, comparable in thickness to a regular eraser or a typical wedding band, effectively removes malignant cells while minimizing harm to nearby tissue.

Cancerous tumors can present prominent horizontal boundaries at the edge, whereas vertical borders are less apparent, adding complexity to the task.

“Many surgeons we work with have expressed difficulty in precisely resecting tumors,” Krieger stated. Surgeons use a little ruler to measure a 5-millimeter distance and mark the edges on the sides. Determining the appropriate depth to reach is somewhat challenging.

Despite the meticulous and comprehensive pre-surgery planning, the 5-millimeter border is considered a “blind zone.”

Doctoral student and team member Jiawei Ge explained that surgeons face a hurdle in accessing the tumor directly because of the surrounding tissue. They are able to observe the exterior of the tumor but are otherwise limited to viewing the healthy tissue. The map exists within the surgeon’s imagination.

The researchers utilized tongues to test the ASTR. Tongue tumors are an ideal candidate for evaluating this new surgical method because of their surface accessibility and existing application in experimental surgery. Although rare, you may be familiar with this ailment impacting certain celebrities like Michael Douglas and Eddie Van Halen, the latter of whom underwent unsuccessful surgery.

The researchers utilized tissue from a pig’s tongue to employ ASTR in excising a tumor along with precisely 5 millimeters of good tissue through the employment of its vacuum grabbing and cutting equipment. They performed six successive resections, and each time the ASTR procedure was successful without any interruptions, demonstrating the team’s ability to convert human instructions into precise robotic movements.

Krieger added that the physician can oversee the robot and provide pre-surgery instructions, after which the robot carries out the procedure sequentially. “Surgeons can achieve precise horizontal margins using a ruler, but our robot demonstrates significant improvement in ensuring accurate depth margins.”

The new robotic surgeon was created using technologies originally developed for the Smart Tissue Autonomous Robot (STAR), which successfully conducted the first fully autonomous laparoscopic surgery in 2022, including the connection of two ends of an intestine.

The team created the technical components of STAR to build ASTR, an autonomous robotic system with dual arms controlled by vision.

“We have previously used the robot to make a cut, but this is the first instance where we have performed a bulk resection and completely removed a tumor,” Krieger stated. “That is the main innovation in this case.”

ASTR’s next procedure involves operating on an internal organ, like a kidney. Various methods and obstacles will need to be considered in order to access the tumor. A new era of tumor resection may be approaching by merging ASTR’s precision with cutting-edge imaging technology.

Krieger found that the employment of robots in clinical practice is already common and hence not a significant paradigm shift.

The research is featured in IEEE Robotics and Automation Letters.

As Editor here at GeekReply, I'm a big fan of all things Geeky. Most of my contributions to the site are technology related, but I'm also a big fan of video games. My genres of choice include RPGs, MMOs, Grand Strategy, and Simulation. If I'm not chasing after the latest gear on my MMO of choice, I'm here at GeekReply reporting on the latest in Geek culture.

Artificial Intelligence

Google DeepMind Shows Off A Robot That Plays Table Tennis At A Fun “Solidly Amateur” Level

blank

Published

on

blank

Have you ever wanted to play table tennis but didn’t have anyone to play with? We have a big scientific discovery for you! Google DeepMind just showed off a robot that could give you a run for your money in a game. But don’t think you’d be beaten badly—the engineers say their robot plays at a “solidly amateur” level.

From scary faces to robo-snails that work together to Atlas, who is now retired and happy, it seems like we’re always just one step away from another amazing robotics achievement. But people can still do a lot of things that robots haven’t come close to.

In terms of speed and performance in physical tasks, engineers are still trying to make machines that can be like humans. With the creation of their table-tennis-playing robot, a team at DeepMind has taken a step toward that goal.

What the team says in their new preprint, which hasn’t been published yet in a peer-reviewed journal, is that competitive matches are often incredibly dynamic, with complicated movements, quick eye-hand coordination, and high-level strategies that change based on the opponent’s strengths and weaknesses. Pure strategy games like chess, which robots are already good at (though with… mixed results), don’t have these features. Games like table tennis do.

People who play games spend years practicing to get better. The DeepMind team wanted to make a robot that could really compete with a human opponent and make the game fun for both of them. They say that their robot is the first to reach these goals.

They came up with a library of “low-level skills” and a “high-level controller” that picks the best skill for each situation. As the team explained in their announcement of their new idea, the skill library has a number of different table tennis techniques, such as forehand and backhand serves. The controller uses descriptions of these skills along with information about how the game is going and its opponent’s skill level to choose the best skill that it can physically do.

The robot began with some information about people. It was then taught through simulations that helped it learn new skills through reinforcement learning. It continued to learn and change by playing against people. Watch the video below to see for yourself what happened.

“It’s really cool to see the robot play against players of all skill levels and styles.” Our goal was for the robot to be at an intermediate level when we started. “It really did that, all of our hard work paid off,” said Barney J. Reed, a professional table tennis coach who helped with the project. “I think the robot was even better than I thought it would be.”

The team held competitions where the robot competed against 29 people whose skills ranged from beginner to advanced+. The matches were played according to normal rules, with one important exception: the robot could not physically serve the ball.

The robot won every game it played against beginners, but it lost every game it played against advanced and advanced+ players. It won 55% of the time against opponents at an intermediate level, which led the team to believe it had reached an intermediate level of human skill.

The important thing is that all of the opponents, no matter how good they were, thought the matches were “fun” and “engaging.” They even had fun taking advantage of the robot’s flaws. The more skilled players thought that this kind of system could be better than a ball thrower as a way to train.

There probably won’t be a robot team in the Olympics any time soon, but it could be used as a training tool. Who knows what will happen in the future?

The preprint has been put on arXiv.

 

Continue Reading

Engineering

New concrete that doesn’t need cement could cut carbon emissions in the construction industry

blank

Published

on

blank

Even though concrete is a very common building material, it is not at all the most environmentally friendly choice. Because of this, scientists and engineers have been looking for alternatives that are better for the environment. They may have found one: concrete that doesn’t need cement.

Cement production, which is a crucial ingredient in concrete, ranks as the third most significant contributor to human-caused carbon emissions globally. Nevertheless, in recent years, a multitude of alternative techniques for producing more environmentally friendly concrete have surfaced. One proposed method involves utilizing industrial waste and steel slag as CO2-reducing additives in the concrete mixture. Another suggestion is to utilize spent coffee grounds to enhance the strength of the concrete while reducing the amount of sand required.

However, a certain company has devised a technique to produce cement-free concrete suitable for commercial enterprises.

The concrete has the potential to have a net reduction in carbon dioxide and has the ability to prevent approximately 1 metric ton of carbon emissions for every metric ton used. If this statement is accurate, the cement-free binder will serve as a noteworthy substitute for Portland cement. According to BGR, the new concrete also complies with all the industry standards of traditional cement concrete, ensuring that there is no compromise in terms of strength and durability.

While it is still in the early stages, the situation seems encouraging. C-Crete Technologies, a company specializing in materials science and holding the patents for a novel form of concrete, has utilized approximately 140 tons of this new cast-in-place (pourable) concrete in recent construction endeavors.

In September 2023, the company was granted an initial sum of almost $1 million, promptly succeeded by an additional $2 million, by the US Department of Energy to advance the progress of its technology. In addition, it has garnered numerous accolades that are facilitating its growth in operations.

The widespread adoption of cement-free concrete in future construction projects has the potential to significantly alter the environmental impact of the industry. Although C-Crete seems to be one of the few companies currently exploring these new alternatives on a large scale, it is likely that others will also start embracing them in the near future.

 

Continue Reading

Engineering

To get gold back from electronic waste, the Royal Mint of the UK is using a new method

blank

Published

on

blank

There are hidden mountains of gold in the junkyards, full of old smartphones, computers that don’t work anymore, and broken laptops. A new project in the UK wants to find and use these hidden riches.
The Royal Mint, which makes British coins for the government, has agreed to work with the Canadian clean tech startup Excir to use a “world-first technology” that can safely get gold and other precious metals out of electronic waste (e-waste) and recycle them.

Electronic devices have circuit boards that have small amounts of gold in their connections because gold is a good conductor. These boards also have useful metals like silver, copper, lead, nickel, and aluminum.

In the past, getting the metals was hard, but Excir’s new technology can quickly and safely recover 99 percent of the gold that is trapped in electronic waste.

They prepare the circuit boards using a “unique process,” and then they use a patented chemical formula to quickly and selectively remove the gold. The liquid that is high in gold is then processed to make pure gold that can be melted down and formed into bars. Palladium, silver, and copper could also be recovered with this method.

“Our entrepreneurial spirit has helped the Royal Mint do well for over 1,100 years, and the Excir technology helps us reach our goal of being a leader in sustainable precious metals.” The chemistry is completely new and can get precious metals back from electronics in seconds. “It has a lot of potential for The Royal Mint and the circular economy, as it helps to reuse our planet’s valuable resources and creates new jobs in the UK,” said Sean Millard, Chief Growth Officer at The Royal Mint.

At the moment, about 22% of electronic waste is collected, stored properly, and recycled. But with this kind of new technology, the problem of old electronics could be lessened.

Every year, the world makes about 62 million metric tons of electronic waste, which is more than 1.5 million 40-tonne trucks’ worth. That number will go up by another 32% by 2030 as more people buy electronics. This will make it the fastest-growing source of solid waste in the world.

The World Health Organization says that e-waste is hazardous waste because it contains harmful materials and can leak harmful chemicals if it is not handled properly. For example, old electronics can release lead and mercury into the environment, which can affect the development of the central nervous system while a person is pregnant, as a baby, as a child, or as a teen. Also, e-waste doesn’t break down naturally and builds up in nature.

Aside from being a huge waste, this is also a big problem for the environment. There could be between $57 billion and $62 billion worth of precious metals in dumps and scrap yards.

Continue Reading

Trending