Connect with us

Nanotechnology

The identification of vulnerabilities in virtual reality systems

blank

Published

on

blank

A group of computer scientists affiliated with the University of Chicago has identified a plausible weakness within virtual reality systems. According to the researchers, this flaw has the potential to let a hacker add an “inception layer” between a user’s virtual reality home screen and their virtual reality user or server. The research team has published a scholarly article detailing their methodology and outcomes on the arXiv preprint repository.

Virtual reality (VR) systems enable users to engage in interactive experiences within a simulated environment, wherein a wide range of conceivable scenarios can be simulated. In this novel endeavor, the research team envisioned a hypothetical situation wherein hackers may implant an application onto a user’s virtual reality (VR) headset, thereby deceiving users into engaging in actions that could potentially expose confidential data to the hackers.

The underlying concept of the application is to introduce an additional dimension that separates the user from the virtual environment often encountered through their virtual reality (VR) gear. It is known as an “inception layer,” after the movie in which Leonardo DiCaprio plays a character who experiences the downloading of a modified layer of reality into his brain.

According to the researchers, this layer has the potential to enable hackers to capture data, such as a passcode inputted into a virtual ATM. Additionally, it has the capability to intercept and modify data, such as monetary sums allocated for a transaction, and redirect the disparity to the hacker’s financial account.

It has the potential to incorporate visual elements into the virtual reality environment, such as characters embodying acquaintances or relatives, and employ this deception to establish confidence or obtain privileges. Essentially, it has the capability to observe or modify gestures, vocal emissions, internet surfing behavior, and social or professional engagements.

According to the research team, it is possible for a user to download such an application onto their virtual reality (VR) device in the event that they successfully breach their WiFi network or obtain physical entry. Once implemented, it has the capability to operate autonomously without user intervention. The researchers recruited 28 participants to play a game using a demonstration virtual reality headset in order to examine the aforementioned hypothesis.

The researchers proceeded to download an application onto the devices, imitating a hacking incident. Subsequently, the volunteers were queried regarding any observations they may have made, as the download and activation procedures resulted in a slight flashing sound. Merely 10 volunteers observed, and just one of them raised doubts regarding the presence of any malicious activity.

The research team informed Meta, the manufacturer of the Meta Quest virtual reality (VR) system utilized in the experiment, of their findings. In response, Meta expressed their intention to investigate the potential vulnerability and rectify it if it is verified. Additionally, the researchers acknowledge that these vulnerabilities are likely to be present in other systems and applications that similarly aim to establish a connection between users and their virtual reality gadgets.

As Editor here at GeekReply, I'm a big fan of all things Geeky. Most of my contributions to the site are technology related, but I'm also a big fan of video games. My genres of choice include RPGs, MMOs, Grand Strategy, and Simulation. If I'm not chasing after the latest gear on my MMO of choice, I'm here at GeekReply reporting on the latest in Geek culture.

Engineering

To get gold back from electronic waste, the Royal Mint of the UK is using a new method

blank

Published

on

blank

There are hidden mountains of gold in the junkyards, full of old smartphones, computers that don’t work anymore, and broken laptops. A new project in the UK wants to find and use these hidden riches.
The Royal Mint, which makes British coins for the government, has agreed to work with the Canadian clean tech startup Excir to use a “world-first technology” that can safely get gold and other precious metals out of electronic waste (e-waste) and recycle them.

Electronic devices have circuit boards that have small amounts of gold in their connections because gold is a good conductor. These boards also have useful metals like silver, copper, lead, nickel, and aluminum.

In the past, getting the metals was hard, but Excir’s new technology can quickly and safely recover 99 percent of the gold that is trapped in electronic waste.

They prepare the circuit boards using a “unique process,” and then they use a patented chemical formula to quickly and selectively remove the gold. The liquid that is high in gold is then processed to make pure gold that can be melted down and formed into bars. Palladium, silver, and copper could also be recovered with this method.

“Our entrepreneurial spirit has helped the Royal Mint do well for over 1,100 years, and the Excir technology helps us reach our goal of being a leader in sustainable precious metals.” The chemistry is completely new and can get precious metals back from electronics in seconds. “It has a lot of potential for The Royal Mint and the circular economy, as it helps to reuse our planet’s valuable resources and creates new jobs in the UK,” said Sean Millard, Chief Growth Officer at The Royal Mint.

At the moment, about 22% of electronic waste is collected, stored properly, and recycled. But with this kind of new technology, the problem of old electronics could be lessened.

Every year, the world makes about 62 million metric tons of electronic waste, which is more than 1.5 million 40-tonne trucks’ worth. That number will go up by another 32% by 2030 as more people buy electronics. This will make it the fastest-growing source of solid waste in the world.

The World Health Organization says that e-waste is hazardous waste because it contains harmful materials and can leak harmful chemicals if it is not handled properly. For example, old electronics can release lead and mercury into the environment, which can affect the development of the central nervous system while a person is pregnant, as a baby, as a child, or as a teen. Also, e-waste doesn’t break down naturally and builds up in nature.

Aside from being a huge waste, this is also a big problem for the environment. There could be between $57 billion and $62 billion worth of precious metals in dumps and scrap yards.

Continue Reading

Nanotechnology

The British Army shows off its brand-new “Speed of Light” laser weapon

blank

Published

on

blank

On top of a British Army combat vehicle, the UK government fired what it calls a “speed of light laser weapon” in a test run.

The Land Laser Directed Energy Weapon (LDEW) Demonstrator program of the UK Ministry of Defense produced the weapon. It has now been tested at a firing range in Porton Down, Salisbury. The Ministry of Defense says the “ground-breaking” test went well, and the laser was able to destroy targets more than a kilometer (0.6 miles) away.

A “speed of light laser weapon” was used in the press release for the new test, which led to some confusing headlines.

All lasers move at the speed of light, which is also the speed that all massless particles must move. This may sound impressive to people who fell asleep in physics class. If you want to sell water, you shouldn’t say “very wet” in the ads.

Still, the laser is impressive if you like shooting down enemy drones. This weapon’s best features are that it is small and light, which lets it be used for the first time on land vehicles.

The successful testing of this powerful laser weapon is a major step forward in our efforts to improve the British Army’s future operational capabilities, according to a press release from Matt Cork, who is in charge of the Defence Science and Technology Laboratory. “This technology offers a precise, powerful and cost effective means to defeat aerial threats, ensuring greater protection for our forces.”

Army members will test the “light speed laser weapon”‘s abilities and benefits in “real-world scenarios” later this year.

 

Continue Reading

Engineering

A groundbreaking type of cement has the potential to transform homes and roads into massive energy storage systems

blank

Published

on

blank

For lack of a better word, concrete is awful for the environment. Beyond water, it’s the most-used product in the world, and its carbon footprint shows that making cement and concrete alone is responsible for 8% of the world’s CO2 emissions, or more than 4 billion metric tons of greenhouse gases every year.

But MIT researchers have come up with new material that might be able to help solve that issue. After mixing water, cement, and a sooty substance called carbon black, they made a supercapacitor, which is like a big concrete battery and stores energy.

Admir Masic, a scientist at MIT and one of the researchers who came up with the idea, said in a statement last year, “The material is fascinating.”

“You have cement, which is the most common man-made material in the world, mixed with carbon black, which is a well-known historical material because it was used to write the Dead Sea Scrolls,” he said. “These materials are at least 2,000 years old, and when you mix them in a certain way, you get a conductive nanocomposite. That’s when things get really interesting.”

The amazing properties of the material come from the fact that carbon black is both highly conductive and water-resistant. To put it another way, as the mixture hardens, the carbon black rearranges itself into a web of wires that run through the cement.

According to the researchers, it’s not only a huge step forward in the move toward renewable energy around the world, but its recipe also makes it better than other batteries. Even though cement has a high carbon cost, the new material is only made up of three cheap and easy-to-find ingredients. Standard batteries, on the other hand, depend on lithium, which is limited and expensive in terms of CO2: “particularly in hard rock mining, for every tonne of mined lithium, 15 tonnes of CO2 are emitted into the air,” says MIT’s Climate Portal.

Since cement isn’t going anywhere soon, putting it together with a simple and effective way to store energy seems like a clear win. Damian Stefaniuk, one of the researchers who came up with the idea, told BBC Future this week, “Given how common concrete is around the world, this material has the potential to be very competitive and useful in energy storage.”

“If it can be made bigger, the technology can help solve a big problem: how to store clean energy,” he said.

How could that be done? One possible solution is to use it to pave roads. This way, the highways can collect solar energy and then wirelessly charge electric cars that drive on them. Because they release energy much more quickly than regular batteries, capacitors aren’t very good for storing power every day. However, they do have benefits like higher efficiency and lower levels of performance degradation, which makes them almost perfect for giving moving cars extra power in this way.

One more interesting idea is to use it as a building material. The researchers wrote in their paper that a 45-cubic-meter block of the carbon-back-cement mix could store enough energy to power a typical US home for a year. To give you an idea of how big that is, 55 of them would fit in an Olympic-sized swimming pool.

The team says that a house with a foundation made of this material could store a day’s worth of energy from solar panels or windmills and use it whenever it’s needed because the concrete would stay strong.

Franz-Josef Ulm, a structural engineer at MIT, said, “That’s where our technology looks very promising, because cement is everywhere.”

“It’s a fresh way to think about the future of concrete.”

The paper is now out in the journal PNAS.

Continue Reading

Trending